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FOREWORD

This is Part IV of a series of reports Ort rtonales and

techniques of matrix factoring which play an important role

in multivariate analysis teohniques. Indeed, it may well be

said that all adequate models and O oda of multivariate

Analsis are special cases of mat#x factoring techniques.

The more traditional methods of fact r analysis, in particular,

are special cases of more general matrix factoring techniques,

as are also all multiple regression models.

a
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CLUAPT 13

THI PJBIO OF ORGIN

13A3. Kin4s of Origin Problems

In the factor analysts techniques previously discussed, we have express-

ly or Implicitly assumed that we begin with either a correlation matrix or a

matrix of standardised measures. In the latter came the means of the columns

are 0 and their variances unity.

We have indicated in Chapter 4 that the results of a factor analysis

are dependent on the selection of both scale and origin for each of the vari-

able$. We have pointed out that for asce variables, such as height, weight,

timep volumep and many physiological and other variables, there ts a natural

origin which means that when the value of the variable is 0, none of that

attribute exists for a particular entity.

We have also indicated that in psychology and many other disciplines we

may have measures in which it is difticult, if not impossible, to specify the

true zero point for the particular attribute. For example, In psychological

measures the score is frequently the nuambear or items which are ansverwe cor-

rectly. If the items are very difficult and are administered to a group of

first grade children, perhaps none of the children will get any of the items

correct. If these items are supposed to measure some kind of intelligence,

we certainly may not assume that scme of the children have no intelligence

because they got none of the items correct.

The problem of determining the zero points for a particular group of

measures on a number of entities is usually solved by subtracting the mean

from each variable, so that the resulting measures indicate the deviation

of each of the individuals from the mean of the group.



We also pointed out in chapter 4 that the scale of one attribute may be

quite different from that of another, For examplep a difference between

#core of 5 and a score of 10 on a toot may not be oczprable to the difference

between scores of a and 10 on another teet, because the one test may have

many more items in it than the other, and the items in the former may be

much more or much less difficult.

In this chapter$ however, we shall not consider the problem of scalng

the variables. It will be recalled that usually they are scaled so that the

standard deviations are all equal to unity, The more general problem of

scaling and its effect on factor analysis will be considered in Chapter 15.

In this chapter we shall be concerned with problems of origin as they relate

to factor analysts results,

We have in general three kinds of origin problems for a data matrix of

raw measures. The first of these we may call the major transformation prob-

lems the second, the minor transformation problem, and the third, the double

transformation problem.

1,A.1 The Major Transformation Problem. If we have a vertical data

matrix having more entities than attributes, the major transformation proce-

dure consists of premultiplying the raw data matrix on the left by a matrix

whose order is equal to the major dimension of the vertical matrix. The

typical major transformation procedure for a data matrix consists simply of

subtracting the mean of each column vector from every element in the column*

We can see, however, that this amounts to premultiplying the matrix by

a special kind of matrix, as indicated in Eq. (13.1.1).

xi V
x- (I - 1 1



Here we use on the right of the equation to represent the raw ooe matrix,

The • on the left represents the deviation score matrix. The order of the

unit vector is No The matrix In parentheses may be called a centering matrix

because its premultiplioation Into the raw score matrix results in the

matrix whome elements are centered by columns,

It Is easy to see frou Eq. (13.1.1) that if we premultiply both sides

of this equation by the row unit vector# we must get a null rov vector. This

is because premultiplication of the matrix in parentheses by the unit vector

yields the null vector, and therefore the left hand side of Eq. (13.1.1)

must vanioh,

We can show very simply that this matrix operation on the raw score

matrix is the same as if we had subtracted the mean of each column of the

raw score matrix frcm each element of the corresponding column. We indicate

the computation of the vector of column means by Eq. (13.1.2).

Hn 1' X
MI -- (o

This is the raw score matrix premultiplied by a rov unit vector and divided

by the number of rows. This is, of course, the conventional definition of

a vector of means.

The subtraction of the mean of each column from each of the element. in

that column is indicated by Eq, (13.1-3),

x . x-1M (1.!!

It can readily be seen, by multiplying out the right hand aide of Eq. (13.L.l)

and using Eq. (13.1.2), that Eq. (1i.i..) results.

I,



It may not always be true, hniweverp that we wish to Vert'ou our'a"Aly.

Bin upon the deviation score matrix indicated In Eq W I). I nstead of

*subtracting the mean of each column froms the raw #core matrix,, ws may wish

to add other constants to the oolumns.

Thbigs. cam is ndicated by Eq. (13-.14).

Here we may have a general vector of values, V., In which each element In the

V* vector may be different* Some of the elements may be positive and sawe

negative, If we have a set of measures taken from arbitrary origios,, and if

we have a good rationale for determining what the natural origins should bet

we may adjust the matrix as in Eq. (13.1-i4) so that the attributes of the

matrix U on then left may be regarded as being measured from the natural ori-

* gins of the attributes.

An example of natural origins occurs in learning data. One may, for

exmple,, have a group of subjects who are learning a skill such as typevrit-

ing. Measures of proficiency for a group of subject may be taken at weekly

Intervals. A speed score of 1.0 words per minute during the third week would

be meaningful when compared with a speed score of 60 the fifth week. One may

therefore construct a data matrix in which the rows are entities or persons,

and the columns are scores made at successive time Intervals. To take devi-

ation neasures for each of the successive time intervals rather than retain

the ori~in'.l m onsiurro nn y, le'o'. puivi mly +Ao tnttknuinioa that one is inter-

ested in studying*

13,1,2 The Minor Transformiation. We nay have a type of etrigin problem

loes cciumon thgai the one considered in the previous p~araraphs. This may tie



calls4 i minor transformation, Rlre the 4sta matrix it multiplied on the

right by a oentering matrix whom@ order is the minor order or width of the

data matrix, Such a transformation is Indicated in Eq. (o 1.,).

w . x (zI )

Iraer we have the raw score matrix X postmultLplLed by the centering matrix

In parentheses, This operation produces the matrix W on the left side of

Eq, (l•ol05) whose rove sun up to O It is easy to see that If we postbiulti.

ply both sides of Eq. (1).1o5) by a column unit vector, the result must be

a null vector, This is because the centering matrix postmultiplied by the

unit vector yields a null vector.

Let us now see what this type of operation means. We Indicate a column

vector of row means by Eq. (1i3.1.6).

Let

m . X..l (13.1.6)
n

We see that nov the mean of each row Is subtracted from each element

in the corresponding row of the original matrLxp as in Eq. (13.1.7).

W , X-m' (1X3. .7)

If we multiply out the right hand side of Eq. (13.1.5) and substitute fromi

the left of Eq, (13-1.6), we get Eq. (13.1.-).

le may well ask why one should wish to center a matrix on the right

in this fashion. One may have reason to believe that only the deviations

of scores frcm a person' a own mean are of significance* Certain models used

in the measurement of personality traits result In right centered data matri-

cess
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Zt may be that instead of eubtracting the mean from each row of a data

matrix# we wish to subtract saue other value, For example, we miy have a
series of blood pressure readings over a period of time for a number of mndi.

viduals, It may be thought that the significant measure in not the absolute

blood pressure-at any interval, but rather its deviation from the blood

pressure during a given condition of the individual, such as when he Is rest-

ing or when he first gets up in the morning.

In this case then, a different value ma• be subtracted from each of the

row observations for the individuals, as Indicated in E.q (13.1.8).

V X - v 1' (3 .1.8)

Here v is a vector which may represent acme base state for each of the indi-

viduals, and its elements may vary from one individual to the next.

In cry cases the results of the factor analysis will be influenced by

the right centering type of operation or the generalization of It indicated

In Eq. (1.31.8).

13.1*3 The Double Transformation. In the previous discussion of the

minor transformation we assumed that no major or left transformation had

been performed on the data matrix. Perhaps the more common case involving

the minor transformation or right centering of the data matrix occurs when

there has previously been a major or left centering transformation also. It

is perhaps most conmon to center a data matrix on the right after it has been

converted to a deviation score matrix whose clunmn means are 0.

The case of the doubly centered matrix is indicated by Eq. (13..19).

, - (!. ll'x(1*•L---)X (1 • (13.1.9)



Here we have the raw score matrix promultiplie4 by a centering matrix and post-

multiplied by another centering matrix. Zt must be observed, however, that

these are not in general the same centering matrices. since the number of en-

titles is not usually the same as the number Of attributes, The number of en-

titles is ordinarily greater than the number of attributes. Then the order

of the left centering matrix will be larger than that of the right centering

matrix. Ths Is Indicated by the scalar quantities used to divide the major

product mcment ot the unit veactors in the parentheses, It will be noticed

that on the left this is & indicating the number of cases, and on the right

it is n. indicating the number at variables,

Let us now define a matrix or scalar quantity, Sp as in Eq, (13.1.10).

C1a I =" 13.x10Tl X (.l3..lo)

This, we see# Is obtained by taking the sum of all of the elements in the

raw score matrix, and dividing it by the product of the number of entities

by the number of attributes, and then taking one half this ratio. Obviously

then, the value of a is simply one half the average value of all of the ele-

ments in the data matrix.

We next define a row vector as in Eq, (13.11).

We use a prescript 4 for the V vector, which in simply the M vector of Eq.

(13.1.2) fromn each Plemeno Add •hnh hna ne tr arbt&'ited the scalarr a given

in Eq. (13.1.10).

We define another V vector with a prescript m as in Eq. (13-1.12).

V m 01- 1 1..)
m



This is obtained by subtracting from each element of the vector of row means

dfined in Zq. (13.1.6), the e acala. calculated in E4. (13..•0o).

We now dfine4z matrix an in Eq, (1301#13)0

This is obtained by subtracting from the raw #core matrix two major products

of vectors. The first of these is the unit vector postzultiplied by the

vector calculated in Eq. (13, ), and the second is the vector calculated

in Eq, (1391.12) postmultiplied by the unit row vector. It can be proved

from Eqs. (13.1.9) through (13,1.12) that this yields a matrix which is both

left and right centered. This means that both the sums of rows and columns

are 0.

It should be observed that the name results could have been obtained by

first performing a left centering, as in Eq. (1391.3), and then performing a

right centering on the resulting matrix, as in Eq. (13.1.7). In this cane,

however, the right centering would have been performed on the x matrix cal-

culated In Eq. (13.1.3), rather than on the raw score matrix calculated in

Eq. (13.1.7).

As in the previous examples, one may also have a more rational basis

for adding a particular scalar to each element in a column, and a particular

scalar to each element in a row. This model is indicated in Eq. (13.1.14).

Y W X - V1  10) 13.le

Here the V vector and the v vector in the tArmN on the right side of the

equation consist of such elements.



In all of the three cases Indicated, It the constants adde4 produce right

or left centering or both, the analyss Is .somewhat simpler than It general

scalars are added, as In Eqs. (l1.i.4), (l•.l.8), and (13.1.14).

13.2 1psative Measures

We shall next consider a special type of data matrix which It a special

case of the minor and double trnsformation types considered above. These

are sametimee called Lpsative measures.

There Is a rather large class of problems in psychology which involves

ipsative measures, These measures do not purport to be comparable from one

Individual to another for a given attribute, but only for different measures

of the some indLvidual. That i.s, the measures indicate the relative order

of magnitude of the variaV., for a particular individual. For that individual

the origin of the measures may be quite arbitrary. Measures such as these

are known as ipsative, as distinguished from normative measures which do indi-

cate for a particular variable the differences among individuals. This gen-

era]. problem has been extensively treated by Clemans (1956) in a doctor' s

dissertation,

First we shall consider how in psychology we may obtain matrices of

data which are ipsative or which merely indicate from some arbitrary origin

for each person his value on each of the variables in the set.

13.2.1 Definition of Ipsative Variables. We begin by giving a more

genertl mnthmpn•i1onl A-Finition vf ipsative variables than is commonly tiled.

We have seen that by a right ,1.-•W-rini' 1%y.- !,."-tfiI,1on in which the row

means are s.ttbttao.-n' A-00 ePrh element in a row, we get a matrix the row

sums of which are O. We could now arbitrarily add some nonstnnt or scalar

to each of the rows of this resulting matrix so that the rows vnioti nird itp



to A constant Lnuot$4 of 0144I"d up to 0.

Next let ul lools at the problem tL is different way. Suppose that we

have a matrix of rw4 maseures obtatne4 In some partioulAr ma nnort which we

shall dtAsuhs tn more detail latero duppose, howeverp that this matrix ex-

hibits the ohwaotoeristo that the snm of rove all add up to the sone con-

stantl aDay 1) as 041iatO4 In Iq. (32..1).

X * @1 (1. 2.1)

This eqatlon Indtoatee that the data matrix postmultlplied by the unit vector

is equal to same oonstant times the unit vector•.

Suppose now we perform a left centering operation on this matrix, which

amounts to putting it in deviation form by columns so that the sums of all

columns are O0 This operation is Indicated in Eq. (13.2.2).

Recall that this operation simply subtracts the mean of each column frcm

each element in that column.

We nov prove that the resulting matrix x has the properties of a right

centered matrix, as indicated in Eq. (13.2.3).

x 1 a o (13.2.3)

This means that the sums of rovw of the resulting matrix are all 0.

The proof is as floUwd, F'rom Rq. (13.•.2) we can write Eq. (13.2.4).

x 1 0 tW X1 (13.2.4)

flere wv simply expand the right side of Eq. (13.2.2).
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Decau, of Eq. (.2.), we cam write Eq*. (3.5)

it Xl w o 3 -uN (iXa,,)

This means that the am of the elements in the X matrix is the constant a

times the number of entities, N.

If we substitute Eqs. (13.2.1) and (13.2.5) in Eq. (•#.2.4),, w get Eq.

(13 .2.6).

xl . cl-cl -c (I1.2.6)

This proves that the sums of rows are 0 for the matrix in Eq. (13.2.2).

To state the case simply, if we have a matrix whose row elements add

up to the same constant and we perform a left centering operation on this

matrix, the resulting matrix is such that its row elements also add up to 0.

While many of the matrices we deal with in psychology are not directly of

the right centered type whose rows add up to 0, nevertheless, when they are

left centered or put in deviation form, the rows are also in deviation form

or have the property of right centered matrices.

13.2.2 Sources of Ipsative Variables. We shall nov consider a number

of different ways in which ipsative matrices can arise. We shall use the

term ipsative to cover any set of measures with entity rows and column attri-

butes such that the row sums add up to the constant, whether this constant

is 0 or different frcc 0.

One type of model which involves the ipsative matrix is the differen-

tial prediction model. In this model we attempt to predict in which of a

number of activit•y variables a person would be most likely to be superior,

The question, however, is not what his score or performance would be in each



of the criterion variables as ccmpar4 with other persons In the samples

but how good he would be in eacb criterion measure relative to his perform-

anoe in each of the other criteria,

Zt can be shown In methods developed by Horst (1951&) that a solution

of such a problem results from the followino operations, We require a

matrix at intercorrolations or predictor with oriterion variables* This

may or may not be a matrix on which the correlations for all pairs of vari-

ables are baed on all the cases. Usually it will not bet as we have seen

in Chapter 1I In any ca"eO suppose we have such a correlation matrix In

which the rows are corrolations of a given predictor variable with all the

criterion variables, or In which a column is the correlation of a given cri-

terion variable with all the predictor variables. It we take such a matrix

and perform a right centering operation upon it, we then have a resulting

matrix whose rows add up to 0. By means of methods which are beyond the

scope of this text, we then use this right centered matrix together with

other data to derive a matrix of prediction weights to apply to the pre-

dictor variables, so as to give the best differential prediction of success

in the criterion variables.

Another source of ipsative measures comes from what is known an the

forced choice type of psychological inventory. Here the subject ts pre-

sented with pairs or groups of items. He is instructed to indicate which

of these is most like him, which he most agrees with, or same other instruc-

tion. •hich requires him to mark only one of each pair or group. It these

scales are properly constructed, they have the advantage that the subject

is choosing among the two or more items on the basis of two or more differ-

ent traits, rather than on the basis of some single dimension, such as social
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desirability, Examples of such inventories are the Edwards Personal Prefer-

once cohedulep the Kuder Preference Record, and others,

One of the charaoteristics of these measures is that normally the items

are paired or grouped in such a fashion that the total of each persones score

on each scale is a constant, That is; if the invmntory is scores, says for

15 different traits or measures, the siu of each person's measures vill add

up to the same constant. This meos, then; that if a set of measures is

transformed to deviation measures by a left centering operations the sumn

of rows of the resulting matrix will be O.

Another source of Ipsatized measures may occur when it Is desired to

determine experimentally the properties of ipsative, as distinguished from

normative, measures. Wright (1957) administered the Edwards Personal Prefer-

once Schedule to a group of individuals, The Items In the schedule were al-

so prepared in a rating scale format so that each item was presented singly,

and the same subjects were requested to respond on a rating scale which in-

dicated the extent to which the item applied to them. It was then possible

to goet a score for each of the traits presamably measured by the scale, by

means of an appropriate scoring key. The problem was to see how the results

of this kind of format compared with those of the forced choice, after the

rating scale measures had been ipsatized by means of a right centering oper-

ation.

Another type of ipsatization seems to occur, in part, with self-apprais-

al inventories of the intcren•., pevsanAlity, And tempertwimnitt type, even

though the items are not in paired or forced choice format. There is evi-

dence to indicate that, if a person is presented with a set of items or

statements in which he is asked to indicate how well each statement applies
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to him, he engage in a sort of #@Lf-uplatitng operation# Zn othor word$#

he tends to adopt som sort of an average of all of the Items as they apply

to him, and then indicate which of the Items It above and which below his

own averape for all or the items In the set. There seems to be a tendency

to adjust oneself to the particular set In a relative rather than an absolute

sense. This appears to be a special case of a mneral phenomenon in which it

In easier to make comqpertive Judgments rather than absolute ludpent.,

In a•n case, ftaste aumyeis of items of this kind seems to give results

which indicate that a sort of partial ipsatization has been taking place,

even though not a ecoplate right centering type of operation.

13.2.3 Characteristics of Ipsative Matrices. The effect of either

right or left centering of a matrix on the rank of this matrix is of con-

siderable Importance. It is especially so when ipsattve measures are used

F as predictor variables. If, as is usually the case, there are more entities

than attributes, then the ipsative matrix, after left centering or conversion

to deviation form, is reduced to a rank one less than its width.

This can be seen from Eq. (13.,.5). We learned in Chapter 3 that the

product of any two matrices cannot be greater than the rank of the factor of

smaller rank. If the matrix in Eq. (1.1.5) is vertical, the right center-

ing matrix in parentheses will be of the same order as the width of the data

matrix. Its rank, however, will be one less than its order; otherVise, it

vould not be orthn•nimn +4 the unitt yector. It can aiso be proved that it Is

of rank only one less by showing that it e'AnnoloI tiq nkhogozial to any other

than the unit vector.

As already indicated, ipsative measures, whether derived from experi-

mental or from computational procedures, cannot be normative in the sense



that one person can be compared with another with respect to a mingle va.t-

able* This io, of course, because acme arbitrary constant has been added or

subtracted from all scores of each subject measured# Minee this is not In

general the same constant for all subjects, the resulting measures are not

comparable from one subject to another, This limitation of ipmative measures

Is often overlooked. Frequently, persons are erroneously compared with one

another with respect to ipoative measures,

13.3 Basic Structure and tho ,Problem of Origin

We have indicated in Section l1.l of this chapter that in general the

tactor analytic results will vary for a given data matrix according to what

is done about the problem of urigin. The importance of this fact is not an

videly recognized as it should be. We shall therefore examine the effect of

row and column origin transformations on the basic structure characteristics

of the data matrix.

In what follows, we shall not be concerned with whether the scale units

are the same for each of the variables in the set. We shall assume for the

time being that sane sort of rational or natural scaling is available, or

that the variables have been scaled in terms of standard deviation or equal

variance units. The problem of scale will be considered in more detail in

Chapter 15, even though the influence of scaling on basic structure is cur-

rently not well underatood.

In the following seutionn us shall consider four cases. The first of

these assumes that we have a left centered matrix in equal standard deviation

units, and that we have already available the basic structure solution for

the corresponding correlation or normative covarinnce matrix. On the basis

of this solution we wish to determine the basic structure of the raw covari-

ance matrix, i.e.p the covariance matrix of 'the data matrix prior to loft
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centering.

The second case assumes that we have the basic structure factors of the

oovarianoo matrix prior to left centering, and we wish to find the basic

structure matrices of the correlation matrix as functions of the basic struc.

ture factors of the raw covariance matrix*

The third case assumes that the deviation or normative data matrix has

also been centered on the right, We shall investigate the basic structure

of the minor product moment Ipsative covarIance matrix of this ipsative data

matrix, as a function of the basic structure factors of the correlation or

normative covariance matrix,

Zn the fourth case we have the basic structure of the covariance matrix

obtained from the ipsative data matrix, and from this we wish to calculate

the babic structure of the correlation or normative covoriance matrix.

We shall now consider same relationships among the tour types of covarL-

ance matrices.

13.•4 Basic Structure of Raw Covariance Matrix ftrm Correlation Matrix

13.4•.1 Computational Equations

13.s.la Definition of Notation

X is the raw score matrix.

x is the deviation score matrix.

HI is the vector of moans,

C is the normative covariance matrix*

0 is the raw covariance matrix.
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t is the basic orthonorma of C,

N to the basic orthonomal of Go

B is the basic diagonal of C,

. is the basic diagonal of 0.

13,491b The Equations

x , (.a4.2)

M,

C m XX x 
)

a , x'x . f ' (1a.0.5)

v . o/ t (.1.H.61

ifL I 1

1YL . v, v + 51 (13.4.7)

1yL U 1348

If L > 1

1"YL "L. (13.4.• 9)



" kL k

n V2

~+

it kAL P 0

Ar < 0

k+ltL kZL (13.4.14)

k+lY - kYL

It? F> 0

kkLY

k+IYL 1(L

i"(8 -0 1), v

H Q Q(f Dj~r) (3I.

a0  (13.14.20)

13.4.2 Ccvptttational Instructions. We begin with a score matrix X

and for the sake of simplicity we assume that the measures all have unit

standard deviations. le then apply a left centering matrix as in Eq. (1i.4.1).

Thiso as we knov, simply subtracts the mean of each of the measures from every

element in that vector.
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Next we indicate the basic structure of this standard acore matrix

as in Eq. (13#4#2)o The right hand side is the product, from left to rightp

of the loft orthonormal by the basic diaLgonal by the right orthonormal.

The moans of the columns of the X matrix are indicated in Eq, (•3.4.3).

This ie simply a row vector of the means of the variable*@

The covariance minor product moment of the matrix in Eq. (l,.4.2) is

given by Eq. (l3.i4.4), Obviously, the left basic orthonormal disappears and

the diagonal 5 Is the square of & in Eq. (@...2).

Eq. (1•.4.4,) is not a computational equation, but is gliven to indicate

the minor product moment of X in terms of its basic structure. The basic

orthonormalo are H and HII, respectively, and the basic diagonal is n. We

assume that the a and the 5 matrices in Eq. (13.4.4) have been calculated

accordina to one of the basic structure methods of factor analysis Indicated

in previous chapters. The problem now is to find the basic structure factors

of the G matrix as a function of the known basic structure factors.

First., we calculate the V vector an in Eq. (13.A•.6). This vector is the

tranupose of the _ matrix calculated in Eq. (l3.4.4i), postmultipliod bj the

vector of means calculated in Eq. (l1.4.3).

To solve for the 0. elements of . we proceed as follows.

If L - 1 we calculate a scalar Y as the sum of the minor product

moment of V in Eq. (1•.l6.6) and the first element of t, viz., 81, as shown

Wo then set a scala\r lY, equal to 8,. as Indicated in Eq. (31.3J.8).

If L is greater than 1 we set IYL equal to 5L-l as in Eq. (13-4,9)) and

we set A equal to 8L' as shown in Eq. (13.••.io).



In any caae, an shown in Eq. (l•13,4.), we let a saolg k equal to

the average or and where the latter two are determined tterativelyp

as we hall *how shortly, for k going trom . to scmu prespecitted iteration

limit.

We substitute k ZL in Eqo (xo..i).

If kFL in sufficiently close to zero, as indicnted by asme tolerance

limit P_ we take kZL as the value at 0 ' as shown in Eq. (1..,lj).

If F is negotivep we net a 1eV Y equal to kZL and the new Y will be

the nae as the previous one, as shown in Eqs. (13.4.•. 4 ) and (l1.4,.l5).

If k is positivo, we set the now Y equal to the current Z and the

new i In the same no the previous one, as shown in Eqs. (13.4..16) and (l1.4o.1).

Once all of the g'o have been solved for, we solve for vectors which are

proportional to the vectors of H given in Eq. (l,.h.5) by means of oq.(13.4418).

This gives the solution for the ith column of an f matrix. As will be seen

on the right of this equation, the V vector defined by Eq. (13.h.6) is pre-

multiplied by the inverse of a diagonal matrix. This diagonal matrix for

the ith column of the f matrix is obtained by subtracting from the 5 matrix

of Eq. (13.4.4) the 0 alrea.y solved for.

The f vector solved foe in E. (13.-.18) is then normalized, as indi-

cated by the product in parentheses on the right of Eq. (13.4.19). In addi-

tion, the normalized f matrix must also be premultiplied by the a matrix

solved for in Eq. (i.4.14) to yield the 1_ matrix of Eq. (13.4.19).

To get the principal azis factor loading matrix for the 0 matrix in Eq.

(13.-.5), the H_ matrix calculated in Eq. (13.4.19) must be postmultiplied by

the square root of the dUinonal matrix of g valties. This is indicated in Eq.

(13.4.co).



13.;103 ?tlnertoaa Example

ZI thin example we ,hart use the same aorralation matrix an in previous

chaptorsi. The vector of meana usad to generate the raw covariance matrix ti

givein in Table 13..1.

;Ie uhall present the three covarianoe matrices rt•w norinativep and

tpoative, an well as their basic structures. The ipeatizing vector in the

last two exnmples was taken as the unit vector divided by/.n,

Table 13.•.2 give* the raw covariance matrix 0 which was obtained by

adding the major product moment of the vector in Table 1).h.1 to the correla-

tion matrix.

The first row of Table 13.4•3. gives the basic diagonal elements, a, of

the raw covariance ma&trix. The body of the table gives the basic orthonormal

iH of the raw covarianco matrix in Table 13,4.2. These were calculated from

a by a method In Chapter 9, an were aloo Tables 13.*,95 and 13.,*,7.

Table 13.4.4 repeats for convenient reference the correlation matrix R.

The first row of Table 13.4.5 gives the basic diagonal elements 8 of the

correlation matrix R_. The body of the table gives the basic orthonormal

matrix Q of R.

Table 13-.4.6 gives the ipsative covariance inatrix calculated from the

correlation matrix by the equation p a (I - L ) R (I -

The first row of Table 13.1•.7 gives the basic diagonal elements of the

ipsative onr•v1a+.hr'ii trtc p. Th.itt . 1.y tit Oht n1le gives the basic ortho-

normal :n,.atrix of P.

The first row of Table 13.4.8 gives the bauic diagonal elements, •_ of

the raw' covarinnee matrix as calculated by Eqs. (13.•.7) through (13I1..17).



The body of the table gives• the basic orthoormalLI I' tts oalculated fre
Wqo4 (13.4.18) and (13,,19), Note that thti matrix is the trnMnpoAe of
the one In Table 13,*4,j, This valuas in the two tables rAgree within limits

or desnal n. c unauy.



Table 13,•,1 - The Vecter nf Means of the 04ta M4atrix

.0,4 .0,3 .0.2 -0,1 .090 0.1 0.2 0,3 0,o4

Table 13.40, - Tho Rav Covarlance Matrix

i.16o0O 0.94900 0.84600 0.1800 0.03300 0.06800 0.21800 0,18900 0,19100
0.94900 1.0)000 0.83500 0.145W0 0.06100 0.09500 0.o6300 0,25700 0.249oo
O.84800 0.8500 1.046000 0.29200 0.20500 0,21600 0.25600 0.21100 0.30:500
0.14500 0.14500 0.29200 1.01000 0.63600 0.61600 0.22900 0.15300 O.32900
O.m3o o6ioo 0.O20500 o.636oo 1.00000 0.70900 0.-1800 0.09100 0.25400
0.0680o 0.09500 0.21800 0.616oo 0.70O0 1.01000 0.21000 0.13300 0.33100
0.21800 o.263m0 0.256oo 0.22900 0.13800 0.21000 1.04000 0.71400 0.60700
0.18900 0.25700 0.21100 0.15300 0.09100 0.13300 0,71400 1.090m0 0.66100
0.19100 0.24900 0.30500 0.32900 0.25400 0.33100 0.60700 0.66100 1.1600o

Table 13#.*. - lBasic Diagonals g and Basic Orthonormal H of the Rev Coveriance

Matrix

3.75072 2.10721 1.72066 0.5000 0.o4746 0.34773 0.28544 0.22741 0.169)7

o.37762 0.45666 0.17015 0.04074 O.0O06 o .Ooo814 o.1851 .0.45801 -0.62802
0.38813 o.4165o 0.12300 0.02755 0.1C67 0.06037 0.05831 .0.24569 0.76246
0.40369 0.29841 0.19922 -0.08977 -0.03480 -0.04380 -0.21507 0.79846 -0.11536
0.28681 -0.34966 0.29652 0.09157 -0.80422 0.10769 0.18423 -O.o4775 0.o677T3
0.2370 -o.41259 o.35441 0.10045 o.29603 0.24950 -o.66799 -0.20104 -0.03115
0.261,85 -0.-40862 0.30373 0.02755 0.48419 .0.24399 0.60225 0.11329 -0.01920
0.32623 -0.12108 o.44122 o.49806 -.0o6532 -o.61914 .0.215a4 -0.04648 0.01281
o.31173 -0.ooo7 -0.52983 o.26521 0.11557 o.68133 0.20372 0.13054 -0.06949
0.36221 -0.20973 -0.-36750 -o.80740 -0.03244 -0.11623 -0.07552 -0.13262 .0.oo06o

Table 13.4.4 - The Normative Covariance or Correlation Matrix R
1.oooo0 0o.82900 0.768OO 0.10800 0.03300 0.10800 0.29800 0.30900 0.35100
0.8290o 1.0000 0.77.500 0.11500 0.06100 0.12500 0.32300 0.34700 0.369oo
0.7680O 0.77500 1.00000 0.27200 0.20500 0.23800 0.29600 0.27100 0.385C0
0.108o0 0.11500 0.27200 1.00000 0.636o0 O.626OO 0.24900 0.18300 0.36c00
0.03300 0.0610o 0.20500 o.63600 1.00000 0.70900 0.13800 0.09100 0.25400
0.10800 0.12500 0.23800 0.6260o 0.70900 1.COOOO 0.19000 0.10300 0.29100
0.29800 0.32300 0.29600 0.24900 0.13800 0.19o00 1.ooo00 0.65400 0.52700
0.30900 0.34700 0.27100 0.18300 0.09100 0.10300 0.65400 1.00000 0.54100
0.35100 0.-3690 0.-38500 0.3690 0.254oo 0.29100 0.52700 0.54100 1.o000o

Table 13,4.5 - Basic Diagonals 5_, and Basic Orthonormal Q of the Correlation Matrix

3.74907 2.04953 1.33079 0.47442 0.38261 o.3474o 0.28533 0.21215 0.16870

0.37009 0.34414 -0.30364 .43,9 o.o1542 0.oo399 -o.1263o -n.42149 -0.66221
0.38211 0.33393 -0.27878 0.08123 0.07647 -0.05713 -n.f.068 -0.31066 0.74085
0.39915 0.20651 -0.-35222 -0.01-294 0.14028 0.02245 0.23294 0.77085 -. 01157
0.28690 -0,45323 -0.0585A1 i 11862 ).n. (L -0.1.5550 -0.17400 -0.13710 0.04754
0.-393 0 -0,519 (6 -0lI5,671 0.16644 0.29930 -0,2ý904 0.66174 -0.19627 -0.0430N4
0.26733 -0.010451 -0.16335 0. 1WO 0.140810 0.261018 o,5 -0.16939 -0.00176
0.33010 0,05559 0.50930 0.41316 -0.18573 0.6069)2 0.2155P -0.06236 0 .•o070
0.31760 0,11592 0.53843 0.23892 0.11339 -0.67780 -0.20136 0.150415 -0.05702
0.36926 -0.0 350 0.319147 -0.8,21141 0.24394 0.14790 04C6259 -0,03072 0.o0089



Table 13#4,6 - The Zpaattve Covariance Matrix

0.56570 0.37?15 0:28859 -.0.)9896 .0.32n6o7 .0.20030 .0.12196 .0.0911.1 .0.114.71,
0.37915 0.5,3451, 0 *2C004 .0.30752 -0,31363 -0.27885 -0.11252 .0.06896 .0,112350
0.28859 0f.200o 0.47548 .010,07 -0,#19919 -0,19541 -0.16907 .-0.17152 •0•12505
.-.29896 -0430752 -0,I1oo7 0.62037 O,•01.,26 o.265014 .0136ý -0.19007 .0.069111
.0-32(07 -0.31363 .0,19919 0.30426 oa1h6i5 0.39593 .0t.2674 .oo,23419 omW3;5
0..28030 -0.227805 .0.19541 0.265o4 0,39593 0.65770 .. 18-396 -0,25W1 -0.12871

-0.12196 .0.11252 .0.16907 -0,14.363 -0,206714 .0.18396 0.591#37 0,26793 0.07559
..o0911.1 -0.06896 ..0174.52 .0.190o7 -0. 234 -.0,g . o.26793 o,63348 0.10915
.0.1114714 -0.11230 .0.12585 o0,o694l ..o13652 -o.12874 0707559 0,10915 0.50281

Table 13*.1. - Basic Diagonals d, and Daeia Orthonormal of the Ipsative Covarianuo
lktrix p.

2.03395 1.33155 0.1.8297 003834T7 0.34.929 0.r.85314 0.#1507 0.169014 .0.00000

.0. 3o.6r -.0.01279 -0.01o 0 0.00150 .i2569 0.44069 -0.64965 0.33334
-0.38541 o.28215 .0.o73o9 o,o7283 -0.ok7.8 -o.O66Ot 0.218•3,9 0,75083 0.-33311
-0.26670 0,35823 0.04678 0.15'.9 0.03581 0.23107 -0.77588 -0.08622 0.33334
0.40533 0,¢6788 o.18aO5 0,776,8 .0,18170 -0,17375 0.1,n56 0.05212 0.33.33
0.48304 0.163914 .0.16644 -0.20,8 M-0.20860 0.66065 0.17hVI -0.00321 033
O.441ll, 0,17168 -0.16513 -0.-3136 0.129794 -0.60680 -0.18124. -0.00143 0.333314

-0.09835 -0.50431 -0.37720 0,22433 o.6187 0.2160 0.05N0 0.01119 0.33333
-0.15)11 -0.53508 -0.24.311 -0.3.2428 -0.65532 -0.M,0398 -020.7363 -0.05301 0.333283
-0.03365 -0.31090 o.83691 -0.25666 0.13948 o.o6331 0.03572 0.00862 0.33333

Table 13.4.8 - Panic Diagonal Elements , and Basic Orthonorml HI as Detrnnined

from Dasic Structure or

3.75072 2.18720 1.72065 0.o50401 0..0746 0.34773 0.28544 0.22742 0.16938

0.3776 0.3882 o.4037 o.,868 o.238o 0.2648 0.3262 0.3117 o.36n2
0.4566 0.4165 0.2984 -0.3497 -0.4127 -0.4086 -0.1211 -0.1041 -0.0W)7
0.1701 0.1230 0.1992 0.2965 0.3544 0.3037 -0.4412 -0.5298 -0.3675
0.01.08 0.0276 -0.0897 0.0915 0.1005 0.0275 0.4980 0.2652 -0.8074

-0.0050 -o01o61 0.0348 o.8W42 -o.296o -0.4842 o.o653 -0.1156 0.0325
0.o008 o.06ol& -0.0438 0.O7? 0.2495 -0.2440 -o.6192 o.6813 -o.1162

-0.1135 -0.0581 0.2151 -0.18113 0.6679 -0.6023 0.2150 -.02037 0.0755
0,1.530 0.2457 -0.798' 0.0477 0.2011 -0.1133 o.0465 -0.1306 0.13-26
0.6281 -0.76214 0.1153 -0.06Q7 0.031.2 0.0192 -0.0129 0.0695 0.001:6



13.• The Uformative Covar'nnce Atia L truoture frrc the Ruw Covaritnoe r\.la

1300%1 Comrputational Ectttions

*15.a.1 DerinLtton of 1fotatIon

Th. notation is the nowe a: In the previous aection.

lo.5,lb The Equations

V u H1 M

T• (i,. 5.2)

- 0

k,11. k ,L k• (13.5.6)C LZ

jul €i - k•L

n V 2 BXV 1 5*8

L (13.5.9)

13.*5.2 Computational Tunouttu tions

F.irst we calculate the vector V of Eq. (13.5.1), This is the vector of

minannt pL,.mLltiplied by th r1.j•t LU-I.110,lh &I1.' 1 4.1-" 1.1"0'UAW OuvMOrI\ mutrix, 0.

IEq. (13.5.2) and (13,5,3) give the limits of the normative basic din~sun-

M1, 8 11 ELqti. (135. 4') and (13.5.5) give the limits of the normative basic



diagonal% for 5L where L Is less than no

Eq. (13•#,6) giveu the kth approximation to the L th basic 4dagonalp bL

To solve for the Lth basic diagonal of 118L' V e use Zq. (13@5,7) iter-

atively, ans we used Eq. (134,,12) to solve for V Wie note, however, that

the last toez¶ on the right in Eq. (13.4.12) is +1, whereas it is -.1 for Eq.

Having solved for the b's, we substitute these in Eq. (13.5.8) to solve

for a vector proportional to the Lth vector of 9, the basic orthonormal 0o

the correlation or normative covariance matrix.

Eq. (13.5.9) shove the normalization of the WL vector of Eq. (13.58)

to give the Lth vector of Q.

13,5•3 Numerical Exomple

The first row of Table 13.5.1 gives the basic diagonal elements 5 of

the correlation matrix R as calculated by Eqs. (13.5•.1) through (13.5.7).

The body of the table gives the basic orthonormal Q1 at nR as calculated by

Eqs. (13.5.8) and (13.5.9). Note that this matrix is the transpose of the

one in Table 13.4.. The values in the two tables agree within limits of

decimal accuracy.

13.6 The Ipsattive CcvarlAno'e PaMs t.ritt.tuv from th KNormative Covarinnce

?asic Structure

13.6.1 Computational Equations

13.6.1a Definition of Notation

R is the noVVnatitv, covaI'm.,,o mtatrix.

in the basic orthnanrmal of R.



I,

t1.o the buasi 41agonal of Ile

tI the ipmatLve onvarian.e matrix,

i s. the basti orthonormal O f'

d La the basic diagonal of e*

V 1. a normal vectnr whose order Is the same as Re

The relation between and R La given by p (I - V v') R (I -V VI).

1).6.lb The Equations

u Q' v (V 4.6. )

ln a W n (13.6.4)

wYL . OL (13.6.5)

y - L+1 (13.6.6)

kz A + kY (13.6.7)
kZL = 2

n nr.

z -o W O (13 .6.8.)

q.L " (I dr 1) u (13.6.9)

kL 2 (m, .6.7)



Table 13.51 P Jasai Diagonals IS an Basic Orthnnomal a as Dotemtn.4 frro 0

3,74907 2,04952 1.33077 0.47442 o.38262 0,347ieo 0,28533 0.2125 0.16811
-0.3701 -0.3821 0.3991 -o0.2869 -0.2392 -0.n674 o.o33o8 -o.3r76 o0.3693
.0,344.2 -0.3339 .,(O.066 0.4532 0.5197 0.4846 .0.0556 .0.114 9 0.023 5
.0.3037 -0.2787 -0.3522 .0.0586 .0.1567 -0.1633 0.5093 0.584 N.195
-0.o43 -0ot812 O.o029 o.1486 -0,1661 -0.,18'8 •.•182 • 0•238. 0.8214
0.0154 0.0765 -0.1 403 -0.7818 0.2"9913 0.4081 .0.18058 0.1134 o0.4,40
0.0039 -0.0571. 0,02N -0.1555 -0.2291 0.,,644 0.6069 .0.6778 0.1479
0.1,6 0.0606 -.0.2329 0.1739 .0.6618 0.6o58 -0.2156 0.2013 -0.0o66
-0o.,.25 -0.31o6 0.7709 -0.1371 -0.1962 0.1693 -0.o623 0.150,4 .0.0307
.0.6622 0.7409 -o00715 0.0476 -0.0431. -0.0017 0o.015 -0.0570 0.0089



13,642 Ccmputational Instructions

Eq@. (13.6.1) defines a vector U which is the product ot the rtiht ortho.

normal matrix of 0 Vestmultiplted by the ipsattstnS vector V,

Eq. (13#.6#2) defines a vector W which is the product of the U vector in

Eq. (13.6.1) premultiplied by the square root of the basic diagonal mf He

Eqs. (13.6.3) through (13.6.6) give the first approximatiens to the

limits of the basic diagonals of pj the ipsatized covariance matrix.

Eq. (13.6.7) gives the k3th approximation to the Lth basic diagonal of

Pt

The iteration procedure for getting successively smaller bcunds for the

d's is the same as in the two previous methods, except that now Eq. (13.6.8)

is the iteration equation. It is of the same form as in the previous two

methods. In this case the "1" is subtracted on the right as in Eq. (13.5.7).

Eq. (13.6.9) gives the calculations for the q.L vectors of the basic

orthonormal a of p. The factor f on the extreme right is a normalizing

scalar.

13.6.3 Numerical Example

The first row of Table 13.6.1 gives the basic dLagonal elements d of

the ipsative matrix p as calculated from Eqs. (13.6.1) through (13.6.8). The

body of the table gives the basic orthonormal q' of p as calculated free Eq.

(13.6.9). Note that this matrix is the transpose of the one In Table 13.4.7.

The values in both tables agree within limits of decimal accuracy, except

the last line of Table 1i.6*1. This disorepaticy to due t.o tho •vrror in the

laotbaom dngoal. ito F~otid 1 n ii~pA o .0002
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Table 13.0,1 . Dito DtDagonals 4. and Basic Orthonormal al Determin4d Min
Bsic Struoture of R

2.00395 1.33155 0.48296 o.38347 0,34928 0.28534 0.2150 0.i69o3 0.0oo00

0.3923 0.3854 o.2667 0.',053 -0.04830 -0.4411. 0.0o83 . o.o36
0.3062 0.2821 0.3583 o.o679 0.16 o.01717 ,o5o43 ,05351 -0.3109

,0.o428 -0.0731 o.o468 o.104i 0.1664 ,0.%65. -0.J772 ,0.2431 0.8369
-0.0157 -0.0728 0.1.521 0.7763 -0.2988 -0.384'. 0.2243 -0.1243 .0.2567
0.0015 -. 04o75 0.0359 -0.1817 -0.2085 0.2979 0.6183 -0.6553 0.1395
0.1255 0.0611 -0.2310 0.1738 -o,6606 0.6069 .-0,2160 0.204.1 -0.06M3

-0.4487 -0.2835 0.7758 -0.1325 -0.175 0.1813 -0.0570 0.1754 -0.0357
-0.6496 0.7508 -0.0-62 0.0521 .0.0324 .0.0015 0.0112 -0.0530 0.0086
0.5171 0:2582 -0.0732 0.2448 0.5206 0.2746 0.2746 0.4190 0.0571



IM, The flormattve Covaetiane DhutL Struoture from the Xpoattve PNest

Structure

13,7,1 Computational Equations

13.7,1% Definition of Notation

The notation in the owne as in Soctton 13.6.1,

L.7.1b The Equations

W u (1.7.2)

S. V' U (13.7.3)

d +n
YL a d"L-1 (13.7.6)

jyL- dL (i3.7.7)

z kYL + kAL (13.7.8)kZL 2

n-1 W2

L dL + - (13.7.9)
.kL L k Z L kL

L (V - q (d - 8L ')'I W)9L (13.7.10)

13,7.-2 Computattonal Instructions

Eq. (13.7.1) gives a vector U as the prudutct of the normative covariance

matrix postmultiplied by the ipsatizlng vector V. If one has only the p

matrix to begin with, as in the case of ipsative personality measures, then



one may be able to hypothoutze a U veoctor, for the iomputAtionait prouedure

requires only the U veotor AnM not the 1 matrix an such.

Mq. (13.7.*) gives A W vector an the product of the right orthonormal

•' of £ and the U_ vector of Eq. (13.7.1).

The next atop is the calculation of the scalar a in Eq. (13.7.-3). Thi

in the minor product of the U and V vectors.

The outer limits of the first basic diagonal of R., viz. 61., are given

by Eqno (13.7.0.) and (13.7.5). 'Trheo value anuume, that the normative

matrix is actually a correlation matrix so that its trace is pa the order

of the matrix. It is well known that this trace is the sum or the basic di-

agonals, hence 51 must be less than n.

Eqv. (13-.7.6) and (13.7.7) give the outer limits of the remaining 5 L

values.

As in the solutions of" the previous sections, the kth approximation to

bLis given by AZ. in Eq. (13.7.8).

Eq. (13.7.9) gives the iteration equation for the 5 values. The same

procedure is used for narrowing the limits of the L'a as in the previous

sections3.

It in to be noted, however, that the summation gces only to n-i. This

equation also differs from the corresponding equation of previous sections

in that the right hand side includes the Z and C terms instead of "T1.

Eq. (13.7.10) shows the calculations for the q. vectors of the basic

orthonormal. of R, The gL on the -xWt-Pn- .1i ht I a Yiiutiu•i vnng nunlar.

13-.3o Hitmer'ini Vxýunple

ThM fiL'st vow of Table 13-•,1 gives the basic dingonal elements 6 of

the co'relat.toti matrix R, us calculated from Eqs. (13.-.1) through (1.3.1.9).
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The body or the table gLvtia the bastL orthonovnal • of 11, au unLuttated fvri

'q, (1-.'i00.)- Not* that thti matrix is the tvanupoiet of the one in Table

13,•5,, The vwluon in the two tablea agroe within limrto or' dooimal anal'aye,

13.8 ft~themau~cai r~roorts

13,8,1 Dfats Struuturo and L•ot Contering

(iven the matrix

x 1 1( . -) X

and

x . eA .' (•O

1' 11 X

* Fom Eqs. (13.8.1) han (t3.8.3)

x' x +MM' u K' X (13.8.14)

Lot

C x' x (13.8.5)

0 - X' X (t,.8.6)

From Eq~s. (113.8.4), (13.8t.5), and (13.8.6)

C + MH' -G (1.3.8..7)

From I.:qe. (15.3..2), (13.8.3), and (13.8:7)

2a '+ H (13.8.8)

Let uc nov Vi'nc the r'oote or 0.

AnmeQ ia vertic~a1. Let .•. 3 ami ud be a complement or Q. In atcl

X~ p A



Table 13•s.. -I BastI DMagonalis , 5and NOaWo Orthonormal aa Determtnod frcom
Icadi Otructure or a and from H V

3.517506 2.oI0952 1.33000 0,47.43 0,3826i 0,34741. 0.28533 0.21215 O.1607o

0.3701 0.3821 0.3991 0.2069 0o2392 0.2673 0.3308 0.3177 o.3693
-6.344, -o.331.o -o.206 o0.4532 0.5197 0.4843 .0.05r6 .0.,.159 0.0235
-0.3037 -.0. n,'38 .0.3521 .000585 -0.1567 -0. 1633 0 1093 0.5385 0.3195
0.01,35 0.0812 -o.o0.12) .o.l.6 o.1665 0.1868 =18 0.a30, .0.8o. 'l
0.0154, 0.0j65 .0,140' -0.7810 0,2993 0.11081 -0.1858 0.1134 0.24.39
-0.0009 0.057,2 -0.0224 0.01555 0.2291 .0.2644 !0.6o69 0.6778 -0.1479
-0.1263 -o.oCo6 0.2330 -0.1740 0.6618 -0.6050 0.2156 -0..014 0.0626
0,4425 0.3106 -0.7709 0.A371 0.1963 -o.1694 0.06 0.1504 0.0307
0.6622 -o.71108 0.0716 *0.0476 o.o431 o.oo8 -o.oo76 000570 -0.0009



we may have

whote t ou the paz'tinm trtanGu14r faotor of tho riaht or sq. (I,,9).

From Eq. (1).8,0) we may writ.

*& p, i) o ÷ M., . j~t .0o (1.8.+o)

wheroe Is a basic vector or a.

From Eq. (13.0.1o)f. •2 M?4,(q 1 ,q 3 ) " F o ,z 1 0

Lot

oo Vt(.81

VSV

•,••.(1 .• •) h•,.,• (11-.8%.t;) it,• (cn• ) tvf,,



S+ 0ol1•1 [i [0]

II [ J(Yvi., ) v L .J (x,.8.i6)0 .01j V1 V,

From Eq. (1).O.16)

(ii.8.17)

From Eq. (13.8.17)

V, V
I + v. (,,2. l,• z)Vi + v_• . o 0o~o

In particular, if c Is basic, then Eq. (13.8.18) becomnes

3. + v (,•2 z)"V 0 (13.8.19)

where - i dropped from V .

Or, in scalar notation,

S2V2
+ + + *.. + . 0 (13.8.,0)

where the V_,s in the numerators of Eq. (13.8.20) are the elements of V in

Eq. (13.8.19).

To solve for the kth root k in Eq. (13.8.20) we consider

V2  V2  Ve

F + g I + 2 + ... + n

1 ~2n

lie can now prove that a root of P lies between 8k+, and *k" As Z approaches

8k+1 frcm above,-, -- _, and as it approaches 1k from below .•



Therefore 4 root of L Iiut lie between 5 and T ov o n . yn

between 8 fk+lh nd we may bWain by letting

If now Z in Eq. (13,8.21) gives F poLitive Zis too large and we take

Y Z

If Z in Eq. (1..21) had given F negative, Z would have been too small

and we would have taken

yu Z

and uood Eq. (13.8.2!4) for a new Z. We continue in this manner until F in

Eq. (13.8,21) io sufficiently close to 0.

le know, however, that

01 (i3.8.25)

Therefore we must find an npper bound to 0I This will in general not be

greater than

y Mm (13.6.26)

To solve for the If we have from Eq. (13.8.17)

vk O (8 " l I)' v
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rok . q q(k13,,")

U.k " . (13,8.a)

The proof for the left centored matrix from that of the uncontored matrix

follows similar lines,

13.8.2 Proof of Dal* Structuwe and Right Centering rpsative frcm Normative

M~sio Btruoture Fhators

Let R be the basic normative covariande or correlation matrix and e the

ipoative covariance matrix so that

p . ( vv') R (z -v v') (13.8.0o)

where

v' V . (13.8.31)

Let tho thne 1i tnt, ut o v if or Ft And p rupeutlvely,, be

- q 5 Q' (13.8.32)

and

p q d q (13.8.33)

Fxro Eqa. (13.8.30), (13.8.32), and (13.8.33)

q d q, (- V V') q8 ' (I - v v') (13



ioaSuae of Eq. (13-.o 0)

V1  0

Fnw Eqn (13.8,34) and (13.8.35)

q d - v) q5 q' q . o (lJ.8.I6)

From Eq. (13.8.36)

q. qd-(Z-Q, vv )8a' q . o () .5.31)

8 q1 q-1' qd-' vv' QVC, 1 q . 0 (13.8.38)

Frcm Eq. (13.8.38)

q.j -(85 diz) Qvv1 Q5Q1 q1  . 0 (13.8.39)

From Eq. (13.8.39)

or

v' Q5•½(8 - dt )"8• Q ½'V -i * a (l5.8.1•o1

Frcn Eq. (1.-.8.-O) we solve for the dL as III the case of the raw-normative

methods. Having solved foe the basic diationtl, we can solve for the basic

orthonormal of p frcm Eq. (13.3.•39). lie have

(13.d8.bi)
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Utwre • La A nom•altitng a3l.aro

Alomativ@ fra4 ipaattve baica structure faotors.

rom Eqra. (13.•.•4) and (i1.8.35) we have

d q' Q-q' Q 5(1~q V V ) 0 1.0z2

from Icqe (13.8.32) and (13.8.4~2)

d q'Q q" q 8 .+ l nVV? v 0 (13.8.43)

From W1q. (13.8.43)

q' Q. + (d -15 1) q' nv v' VI 0 (13.8.44)

From Mi- (13.8.',!.)

q qq .1  + q(- )'' (v v' 8 1) (13.8.4V)

It can be proved that

q 1' - - V vr (13.8.46)

Prom Eqi. (13.8.45) and (13.8.h,6)

.. • - V' q + q (a " I)' ' vv' .5 o (RV.8.'vl)

Promu1tiplyLngI Eq. (13.A.4(•) by VI R g tv-,u%, , nr eq. (13.8.32),

V# o. 8 " v V V, Q + VI R q (d - 1 )-' q'VV' Ri V' 0

or

V 1 q(d-,1 I)3 1 q' qv+a -V' taV 0 0 (13.8.-43)



It we have the veotor R~ V we can solve ZLffo he6 b

methods analogous to the praviou3 methods since we ann readily show that t

3. - t+3. >- It0..8•1

IM. ut.ll need an upper bound for 6 however,

We can nolve for the 0. by revrLting Eq. (la.n.4'l) a

wh.r-(v - q (o- )'d q, R v) (0.

where gi is a normalizing oaclar.



CIIAP2 1.4

CATEQOHCAL VAR1IATZOION IN FACTOBt ARALYOZIJ

In the previous chapters we have rejparde4 data matrices as consisting

essentially or measures for a given number of entities on each of a differ-

ent number of attributes, This type of data matrix has been the one most

commonly used in factor analytic studies. You recall1 however, that in

several chapters we Indicated that in some cases the attributes might have

a natural origin at measurement. For example, in the previous chapter we

suggested that the entities might be persons practicing typewriting and

the attributes might be successive time Intervals.

14.1 Multicategory Sets

W@ may, however, consider a somewhat more general model. For example,

suppose that we have a number of Individuals for each of whom a number of

physiological and psychological variables were measured on each of a number

of successive days or time intervals. For such a net of data we have three,

rather than two. categories to consider. In the conventional case we have

entities and attributes only. In this more general cane we have entities,

attributes, and occasions. Let us now consider possible ways of studying

data of this type.

14.1.1 The Attribute-Entity Sets. In the case of the three category

set, we may consider a number of matrices of the conventional type consist-

Ing of attributes as columns and entities as rows. Each of these matrices

would have the some attrilittlmm anA entitfce fu" a number of different oc-

casions. We may call these matrices-slabs of the three category data matrix.

The problem of how to handle such a set of data by means of factor

analytic technique is one which has not been thoroughly explored. Horst

(1903) has recently discussed the general problem of multicategory sets of



data an4 proposed severml different ways of analyzing such sets, Tucker

(1963) also has considered the general problem of entities, attributes#

and occasions in what he calls the three mode factor analysis model, He

has presented an Lngonious proaedurm for conceiving of a three category

set of data in terms of what he calls acore matrix; which includes the

categories of entities, attributes, and occasions. The method assume*

lower orders for each of these categories than are represented in the data

matrix and the problem then ti to solve for this lover order three category

matrix as a basis for reproducing the observed three category data matrix.

We may consider a simpler way oa handling data of this type as a two

category set. Here the analysis of the data would be amenable to the tech-

niques which we have discussed In the previous chapters.

The first of these ways of considering the data is to regard each oc-

casion for each attribute as a distinct attribute. Thus we would regard an

attribute measured today for a group of entities as different frCu the some

attribute measured tomorrov on the same entities. For example, the variable

of typewriting speed on Monday for irdividual A and the variable of type-

writing speed on Tuesday for the same individual would be regarded as two

different variables. We would then consider a supermatrix in which the en-

tity-attribute slabs would be strung out in such a way that, if we had 4

occasions and 10 attributes, the supermatrix would actually have 10 x 4p

or 40, attributes. We would therefore have a ,40-variable matrix. We may

then consider a factor analysis of such a matrix along the lines outlined

in the previous chapters. This could be solved for principal axis fautor

loadings for each variable or attribute on each occasion.
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Another way of reprrding the sawe set of data would be to consider each

occa•ion as a difforr.et sot of entities, This would mean that the person

whose typewriting speed to recorded today will be considered a different per-

son when his speed is recorded tomorrow, even thotaji he has the same name

and it identifiable as the same Individual. ZIf look at the problem in

this way, we could then string out the entity-attribute slabs for the vari-

ous occasions so that* If we had, say, 20 persons and 4 occasions, we would

actually now have 80 different persons since we regard each individual as a

different person on each of the 4 different occasions. This would give us

a supermatrix, or a column type 3 supervactor, in which each of the matric

elements is an entity-attribute matrix for a specific occasion, Here we

would have 80 entities and 10 attributes. We can now, on a matrix of this

type, do a factor analysis according to procedures described in previous

chapters. Such an analysis could then yield a set of factor scores for

each person on each of the 4 different occasions. It would also yield a

set of factor loadings for each of the 10 variables.

It will be seen that the first and the second ways of setting up the

matrices of data in the form of type 3 supervectors yield essentially dif-

ferent results. In the first case we get a factor score matrix for the 20

entities and we get factor loading matrices for the 10 attributes on each

of 4 different occasions. In the second case we get a factor score matrix

for the entities on each of the 4 different occasions and a factor loading

matrix for the 10 attributes. In the one case we regard the occasions as

different variables, and in the second we regw'd them as different entities.

14.1.2 The Attribute-Occasion Set. In the previous example we have

considered the decomposition of the data cube, as it were, into occasion



slabs such that each slab had entities for rows and attributes for coluns,

We may now consider a different decompoottion of this three dimensional

matrix such that each slab represents a person, Each person matrix may be

regarded as consisting of occasion rows and attribute culumns, We would

then have, using the previous example, twenty 4 x 10 matrices,

We now have two obvious alternatives of treating these slabs of data.

In the first of these, we could string out the slabs into a row type 2

lupervector so that each person is regarded As a different attribute. There-

fore we would have a mupermstrix of 4 occasions and 10 x 20, or 200, attri-

butes. On such a matrix one could then perform a factor analysis,

On the other hand, we may string the matrices in the other direction,

so that each person is considered as a different occasion. We would there-

fore have a matrix with 80 rows and 10 columns. We recognize at onc.e that

this arrangement of the data is the same as the second way of arranging it

In the previous method, except that there has been an interchange of rows.

In both methods the columns are the 10 attributes, but the entities for a

single occasion are grouped together In rows, Ici the second case we have

the some 10 attributes, but the occasion rows are grouped for a specific

entity. We see, therefore, that we actually have$ so far, three different

ways of arranging the data into a row by column data matrix which can be

factor analyzed by available methods.

14.1.3 The Entity-Occasion Pair or Set. Let us now see what happens

if we take the third remaining possibility of decomposing the data. In the

first case we took slabs such that each slab was a different occasion. In

the second cade we took slabs such that each slab was a different person or

entity, and in the third case we take slabs from the cube so that each slab
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Is a different attribute.

In this latter case each slab may be regarded as having entities for

rows and occasions for columns. uppose we string these slabs out into a

row superveotor so that the 20 entities constitute the -rows# and the col.

umns are aets of occasions for each of the successive attributes. We recog-

nLze at once that this is the first arrangement considered In the attribute-

entity slabs, except that oocasions are grouped by attributes, while in the

first case attributes were grouped by successive occasions.

Obviously then, since a data matrix of this type has simply undergone

a right hand permutation of the former type of data matrix, the factor analy-

sis results would be the same except for the permutation of columns in the

data matrix and the corresponding permutation of rows in the factor loading

matrix.

Let us see now what happens if we string these entIty-occasion slabs

In a vertical manner so that in the column supervector we have occasions

for columns, and the rows consist of entities grouped by successive attri-

butes, We see that this gives the same result as when the attribute-occasion

set is arranged in the vertical supermatrix, except that now the submatrices

exhibit grouping of entities according to successive attributes rather than

grouping of attributes according to successive entities. It is therefore

clear that nothing new has been added by reordering of the data into entity

by occasion slabs. The factor analysis of such an ordering of the data

would be the same as for the second case involving the attribute-occasion

set.

14.1*4 Additional. Categories. In the previous section we have con-

sidered what may be regarded as the most obvious categories in sets of data

r .



to be obtained in real life situationst These are oertainly important, and

It in probable that a pest deal more attention will be given to the three

category type of data matrix and to effioient methods of reproducing such a

met of observed data with a smaller number of parameters. This would con.

stitute a generalization of the lower rank approximation to data matrices of

the two category type However, it is already becoming clear that even the

three category type of data matrix will not cover all meaningful categories

encountered in important psychological research.

Let us consider a specific example. Suppose we have a questionnaire

with a set of 64 items to which 18 Individuals will respond. Let us assume

that these entities or individuals are requested to give responses under a

number of different conditions or instructions. For example, they may be

asked to respond to the items as they apply to themselves, to the average

person, to the ideal person, to the respondent as he would like to be, etc.

One may have as many different conditions as he can invent.

Let us assume that there are eight of these conditions. Suppose the

respondents are a group of psychiatric residents in a mental hospital. It

may be expected that these residents are undergoing training and experience

which will modify their responses to the items over a period of time for

the varying conditions. Suppose, then, that these individuals are requested

to repeat the 8 sets of responses to each of the 64 items on 4 different oc-

casions at six month intervals.

Let us now review the essential characteristics of this data model.

First we have sets of matrices involving 18 entities and 64 attributes or

variables, For each condition on each occasion we have such a matrix. For

example, if we have 8 conditions and 4 occasions, this means that we have 32

matrices of order 18 x 64.
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We may also conceive of an additional categorical set which vouU con.

oslt of a set of Instruments or evaluators. This would involve a number of

different ways of evaluating or measuring each attribute for each entity

under each condition and on each occasion. Zt Is interesting to note that

the instrument and the occasion categories ane the basLi concepts involved

in traditional theories of reliability of measures. The instruments corres-

pond to comparable form or comparable measure reliabilltys and the occasions

correspond to consistency or stability over timeo

Zn most of the neasurement models# comparable forn reliability usually

involves only two instruments. These instruments may be persons, test book-

lets, hardware, or what not, For example, we may have a number of different

rators evaluating the same individual on the same attribute for a given oc-

casion. Zn the case of the occasion categoryp we have a special, case of re-

teat reliability which ordinarily involves only two occasions. The problem

of evaluating change, for example, becomes sufficiently complicated from the

model point of view even if we have only the four categories of entities,

attributes, conditions, and occasions. It becomes even more complex it we

include also the additional category of instruments. In any case# it Is

reasonable to assume that a general data model which is completely satisfac-

tory should be prepared to handle at least a five category matrix.

Even though we cannot present a complete analysis of the more general

problem, it may be worthwhile to examine the possibilities of arrangements

for multicategory sets of data in two dimennional arrays which would be

amenable to the conventional methods of factor analysis.

First we may summarize the possibilities with three category sets. we
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indicate theme by A, BS and C, respectively#

(A), (BO)

(B), (AC)

(C), (AB)

Fig. 14.1.1

We seae In Fig. 11.1,A how we may arrange this set of data into three

different kinds of two dimnsional nets, The first set would have the A

category for rows and the D and C categories for column.s The next set

would have the B category for rows and the A and C categories for columns.

The third met would have the C category for rows and the A and *B categories

for columns. A review of the previous subsection will show that this con-

stitutes the three independent ways in which the data can be ordered in

terms of two dimensional arrays, Any other arrangement would constitute

repetitions of those, except for transposition or permutation of the matri-

ceso. Obviously, such operations on a matrix would not affect its basic

structure, except for transposition of the basic orthonormals or permuta-

tion of rows and columns.

Suppose now we have four sets of categories such as entities, attributes,

occasions, and conditionsp which we designate A, B,0 C and D, respectively.

Fig. 14•11.2 indicates the ways in which these four categories can be arranged

in two dimensional array matrices.
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(A), (OpD)

(B), (AID)

(c), (A,#,D)

(D), (ADc)

(AB), (c,D)

(Ac), (BID)

(AD), (BC)

It will be noted that Fig. 14.1.2 is divided into two parts. The first

part indicates those arrangements involving only one categorical set as rows

and three categorical sets as columns. The second part of the figure shows

how the two dimensional submatrices may be arranged into sets so that the

rows will consist of two of the categories and the columns of the other two

categories.

Note that in the first part of the figure the first arrangement has

the members of the A category for rows and the BC, and D categories for col-

umns. The particular arrangement or permutations of the B, C. and D cate-

gories is irrelevant. It must be remembered that the notation used here

does not mean that first, all of the B category columns are given, then all

of the C categories, and finally the D categories. There would presumably

be some hierarchical order of groupings and subgroupings, but these are Ir-

relevant since thece various hierarchical arrangements can be produced by

permutations of columns.

The second arrangement has the members of the B categories for rows,

and members of the A, C, and D catesories, respectively, for columns. Here



again the order of Al CO and D are irrelevant as far as factor analytlo

solution is concerned, no third arrangement has the 0 category for rows

and the A# D, and D categories for columns, Finally, the fourth arrange-

went has the D category for rows and the A, B, and 0 categories for columnse.

Next we consider the second part of Fig. 1.,.12 In which we have tvo

categories for rows and two catesories for columns, Here we see In the

first row that the A and B categories are used for rows and the 0 and D

categories for columns. Aian the ordering of the members of the A and B

categories Is Irrelevant, since they may be permuted at will by a left hand

permutation matrix The second arrangement has the A and C categories for

rows and the B and D categories for columns. The last arrangement in the

second part of Fig. 1,,1.2 has the A and D categories for rows and the 8

and C categories for columns.

It can be seen that no other arrangements exist involving two categor-

ies for rovs and two for columns, which are not either transpositions or

permutations of the matrices indicated in the lower part of Fig. 1.1.2.

Any other combination of two categories, not involving A, which might be

used for rovs would actually constitute a transposition of those already

indicated. For examplep if B and C were used for rows, then A and D would

be used for columns) and one would have the transpose of the third case in

the second part of Fig6. 1..12.

We see now that there are actually seven different ways, not involving

transpositions or permutations, in which the four category data model can be

arranged into 2 x 2 arrays. Any of these may have a conventional factor

analysis performed upon it so as to get a basic structure solution or acme

other approximation or transformation of a basic structure solution. Any



of these arrangements admit of 4 lower rank approximation solution.

One relevant and interesting question is which of these arrangements

Is best from the point of viev of providing the most parsimonious approxi-

mation to the data. It should be noted, for example, that if we have only

three occasionsp and we let this be indicated by Dp the last arrangement in

the first part of Pig. 14#.1.2 has only three rows. A lower rank approxima-

tion to this matrix could obviously not be greater than two@

One criterion which could be useful in deciding what arrangement would

give the greatest possibility for parsimonious description of the data would

be to consider which combination of all possible seven indicated in Fli.

14.1.2 would result in a two array matrix such that its smaller dimension

would be a maximum. Let us take, for example. the illustration used in the

previous section in which we had 18 persons, 64 attributes, 8 conditions,

and 3 occasions. Suppose we designate these as categories A. B, C, and Ds

respectively. Obviously, the arrangement here whose smallest dimension is

a maximum would be A and C as rows and B and D as column•s. Then the smaller

dimension would be 8 x 18 or 144. This, however, is only one consideration

"in deciding what arrangement to use, and the problem of Interpreting the re-

sults still remains*

Let us now see what happens if we have five categorical sets, says A,

B, C, D, and E. These may in particular be the sets of entities, attributes,

conditions, evaluations, and occasions discussed in the previous example.

Since there are five categorical sets, these can obviously be arranged so

that one of the dimensions includes one set, and the other dimension includes

the remaining four• as indicated in Fig* 1461*3.
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(A), (BCD;I)

(C), (ADIN)

(D), (A#DpC#E)

(S), (A,#,cD)

Fig- 14-1-3..

Here sgapi, we can without loss of generality take the raw dimension as the

one having a single category. The data can also be arranged so that one di-

mension has two sets and the other has three "eto, as in Fi. 1o.1.,4 It is

irrelevant which dimension has the three categories and which has the two,

so that without loss of generality we may take the row dimension as having

the two categories.

We may now examl.Le In greater detail the case of the one category row

arrangement in Fig. 14.1.3, We take each of the categories in turn as the

row dimension and the other four as the column dimensions of the two array

matrix. Again, It must be remembered that the sequence of the symbols in

parentheses is not relevant, that only the symbols them3elves are important.

One may have any hierarchical order desired. To adopt a convention, one may

assume that the hierarchical order progresses from left to right so that the

H• category is the final or top hierarchy for the first four arrangements in j
Fig. 19.1.J. This implies a number of submatrices. each of which may be a I

supermatrix, such that each successive submatrix corresponds to each succes- I
sive member of the E category,

Let us now examine the two category by three category, two din nsional

array inatrix arrangements indicated by Fig. 14.1.4.



(ApD)o (D#PE)

(Ac) D (BpDB)

(Aa)# (aoD)

(Bc), (A,D,z)

(BD), (A,#,E)

(au), (AcD)

(CD), (Aaz)

(Cz), (AaD)

(DJ,), (ABC)

Fig. 14.1.4,

We can very simply set forth the rules for specifying the various arrange-

merts by noting that the dimension having two categories can be made up by

considering all possible different pairs of the two categories. This will

obviously be 10, as indicated in the figure. because this is the number of

five things taken two at a time. The column categories will, of course, be

the three categories not represented in the row.

lie now have the general problem of deciding which of these arrangements

would be best for analyzing the data of three or more categorical sets in

terms of a two dimensional array matrix amenable to the factor analytic tech-

niques set forth in earlier chapters. It would doubtless be of interest to

investigate the properties and to attempt interpretations of the various ways
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in which the data Can be laid out in a two dimensional matrix. It is probable

that simplifying or unifying relationships Among thes various methods may be
established,

14.2 Considerations of Origin

Zn the previous chapter we have given attention to the problem of origin

of meauurements and have discussed in part the problem of scale. We have

seon how the basic structure of a matrix varies as we perform either a right

or a left centering operation. We shall nov consider the relationship of

the metric problem to the multicatelory data model which wo have just di.-

cusesed.

Zn general, any of the data arrangements considered in Fig. 10.1.1,

14.1.2, 14.1.e, and 14ol.. must face the problem of metric. Whether we

should have raw score measures, deviation measures, or standard deviation

measures, and to what extent these separate considerations apply to sub-

matrices within the set, must be decided. Ordinarily, if we have a three

category entity-attribute-occasion matrix, we may assume that the difference

in variance and mean for a given attribute over a given number of individuals

frou one occasion to the next would be of interest in the analysis of the

data. Considering, therefore# the ent.ty-attribute matrix for each occasion

slab., we would not standardize the measures by columns. Such operations

would obviously lose information as to relative chnnges or variations over

time for the entities with respect to each of these attributes.,

If we take the second arrangement in Fig. 14.1.1, in which B is the

attribute category and A and C are, respectivielyp entities and occasions,

we might well take standard deviation measurep kth xespect to the attributes,

since these could be a nunber of different kinds of things which were not



measured tn comparable units or from comparable origins, It the centering

and scaling were done over all oacasions for all the entities; we could see

how relative means and variances fluctuated for a single attribute over the

various conditions.

It may be that the problem of metric with respect to multicatelory data

matrices may best be resolved by considering those arrangements which involve

only attributes and evaluators as the row categories, For those arrangesents

one would standardiie by rows, This would allow differences in origins and

variances to show up with respect to changing conditions and occasions, and

would suppress the differences due to the arbitrary metric generally charac-

teristic of attributes and evaluators. Once the data have been standarAized

for these arrangements, they can be rearranged according to other patterns

indicated In Figs. 14.1.1 through 14.1.4.

14.3 Computational Considerations

Once of the problems which frequently arises and which has led to a

great deal of confusion is that of determining under what conditions it is

desirable to factor entitieso and under what conditions attributes.

Suppose we have a two category array, irrespective of what the cate-

gories might be. They might be entities and attributes, as in the convention-

al case; they might be entities and occasions; or they might be attriburee

and occasions, as in the case of the single individual who now represents

a complete population or universe. With any oa these two dimensional matri-

ces we may goet either a major or a minor product moment matrix after apply-

ing acme appropriate operations to achieve a specified metric. This may

consist of either right or left centering or both; or it may also include
I

scaling the members of a category, whether they are entities, attributes, or"



conditions, by means of multiplication by a diaonal matrix on either the

right or left or both,

It to certainly true that the basic structure of such matrices will be

very much a function of the kinds of scaling and origin relocating opera-

tinns that have been performed upon it, Howeverp it does not seem to be

generally recognized that, for any given set of metriciting operations.-

that is, for any given set of operations by which we apply additive Ad

scaling constants to rows or columns or both, it does not matter whether

we factor one set of categories or the other, If, for exmploe, we have a

data matrix which we standardize by persons or by columnse let us say# we

may get the minor product moment of this normalized data matrix and perform

a basic structure analysis on it. This will give us a factor loading matrix

by means of which we can solve for a principal axis or basic structure factor

score matrix as indicated in Chapter •4

On the other handp we can get a major product moment of this matrix

and perform a basic structure analysis on it. The basic structure analysis

will give us precisely the factor score matrix that we obtained previously

by getting first the factor loading matrix and then solving for the factor

score matrix.

Furthermore, if we use this factor score matrix we can then postmulti-

ply the transpose of the standard score matrix by the factor score matrix,

and this will yield the factor loading matrix which we obtained directly

from the previous method by operating on a minor product moment of the

standardized score matrix. It can readily be seen from the definition of

the basic structure that this must be the case$ because if we premultiply

a matrix by the transpose of its left orthonormal, we must by definition
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have the rilght orthonomaaa premultiploed by the basic 41agenal. Conversely,

it we promultiply the transpose tof soh a data matrix by its rtight ortho-

nomal and then premultiply again by the Lnver" of its basic diaonal, we

must get the left orthonormal,

It must be pointed out, however, that these reoiprocil relationships

hold only if the beait structure analysis to pertormed without altering the

diagonal elements of the product mment matrix, whether this is major or

minor. The communalities issue is very much a part of this problm. It

should be emphasized that the definition of ocmmunalities has not been made

sufficiently mathematical so that one can specify the relationship Involved

in these reciprocal type ot solutions it oamunalities rather than unity

are used in the diagonals of the correlation matrix. The various methods of

approximating the cowmunalLtLes will influence the kinds of relationships ob-

tained. Since any mathmatical formulation of the oa:munalLty model is ex-

tremely ocaplexp involving complicated nonlinear relationships, we must con-

clude that the studies which have been done to compare the results of so-

called obverse factor analysis with the conventional methods are not meaning-

ful.

As a matter of fact, it is only for the basic structure solution that

we can express precisely this reciprocal type of relationship. From a theo-

retical point of view therefore, much of the discussion about the factoring

of people versus factoring of tests, or the obverse types of factor analysis,

is irrelevant. However , there are sacne practical implications involved In

deciding whether one does a direct factor analysis on the major product mcm-

ent or on the standardized data matrix.

If, for examplep one has many more attributes than entities, what we



have conventionally called the minor product moment at this data matrix ti

naturally larger than what we have called the major product ment. This is

clear it we regard the natural order of the data matrix an having raws for

entities and attributes for columns, We define the minor product moment as

the natural order premultiplied by its transpose, and the major product mom-

ant as the natural order postmultiplied by its transpose, Then the order of

the minor product moment will be the number of attributes and the order of

the major product moment the number of entities.

If, for example, we have given a personality inventory of, sayp 250

Items to a group of 100 persone, and we wish to have a factor analysis of

the Individual items in the Inventory, the conventional procedure would be

to get the intercorrelations of these Items and to do a factor analysis by

one of the methods outlined in previous chapters. This, of course, would be

a 250 x 250 matrix. This is a large matrix for any of the methods. Its

analysis would be prohibitive with desk calculators and quite expensive with

electronic computers. On the other hand, it we take the product of the data

matrix postmultiplied by its transpose, we have a 100th order matrix which

can be factor analyzed in perhaps one fifth of the time it takes to factor

analyze one which has an order of 250.

We shall see, therefore, how we may proceed computationally with a data

matrix having many more variables than entities. We shall assume that the

matrix Is normalized by columns so that we have moans of 0 and standard de-

viations of unity. If we took the product of this matrix premultiplied by

Its transpose, and then divided by the number at cases, we would have pre-

cisely the intercorrelation matrix or the items*
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On the other handp it we took the produot of the standerdised data

matrix poatmultipled by it. transpose# we would not have a correlation matrix,

Neverthelseal from such a product we may derive a factor loa04nS matrix by one

of the basic structure or principal axis methods, This procedure we shall

tndicate in the next section.

.14 Obverse Factor Solution vith Standard Metric

14.4.1 Computational Equations

4*ol.la Definition of Notation

X is the N x n matrix of raw measures.

M Is the vector of means.

2 Is the diagonal matrix of variances.

O is the major product moment of the standard score matrix.

P is the N x m matrix of factor scores.

Q•;i is the n x m_ matrix of factor loadings.

1i.41.lb The Equations

x' 1N w (114.14.1)

N

- ~(14.14.2)
2 D

d 

(11.
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V * xu (.1,.,6)

a U ,' M (Mi..,7)

w • .* a• ({14..,e)

k. . (1..X 1.9)

ok•.y•. x1 .. *w11 -w• ~ O.14.1.)

0 * P8P' (14.14 *)

a . d(x'dP) (1(X.I))

14.*4.2 Computational Instructions. We begin with the raw score data

matrix. Although the factor loading matrix which we shall proceed to solve

for is precisely the same as the solution we would get from the correlation

matrix, we never actually calculate the standardized score matrix.

First we calculate the means of the variables as indicatod in Eq.

(14.4.1)6 Here we simply get a column vector of the column sums of the raw

score matrix X, divided by I_, the number of cases.

Next we calculate a vector each element of which is the sum of the

squares of the elements of the corresponding column of X divided by N. This

is the R vector, as indicated in Sq. (14.14.2).
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We then calculate the elements of the diagonal matrix# as show In Igq

(14,4•3), This is obtained by constructing a diagonal matrix of the elements

calculated In the vector of Eq, (14.4.2)$ and subtracting from it a diagonal

matrix consisting of the squares of the elements calculated in Eq. (11,.).

It can readily be shown that this in a diagonal matrix whose diagona ele-

ments are the variances of the variables In the raw score data matrix .

Next we Indicate the elements in a diagonal matrix by Eq. (14.4.4).

Here we take the inverse of the diagonal matrix on the left of Eq* (lk.I.,3)o

We next preinultiply the column vector calculated In Eq. (11.1.1) by the

diagonal matrix calculated in Eq. (V11.I.I) to got the vector U indicated in

Now we get a vector V., as Indicated in Eq. (14.4.6). This is the raw

score data matrix postmultiplied by the vector V calculated in Eq. (@ .1.5).

We then calculate a scalar quantity c,_ as indicated in Eq. (1*.I.7).

This it the minor product moment of the vectors calculated in Sqs. (11.I..)

and (14.1&.5).

Next we calculate the vector W as in Bq. (14.4.8). This is obtained by

subtracting from each element of V calculated In Eq. (14.4.6) one half the

scalar a calculated In Eq. (14-..7).

Next we calculate a vector Yk beginning vith k - 1 as in Eq. (14.4.9).

This vector is obtained by postmultiplWing the kth row of the X raw data

matrix by the diagonal matrix calculated in Eq. (14.4.4).

This vector is then used to volve in turn for the elements of a matrix

w, which is the major product moment of the raw score matrix. As we recall,

in this case it is smaller than the minor product moment* Eq, (14.14.10)

shows how we calculate the elements for the kth row and the Ith column. The



Y vector cal ulated in Eq# (14#4v9) 'a potmultiplied by the 4th row of

the I matrix in column formi and trcm this minor product are subtracted the

kth and the 4th elements of the W vector of Eq, (1•4A,8). it to not neces.

sary to calculate the scalar quantities of Eq. (14.4.10) for all values of

4. We need calculate them only for values of I equal to or greater than k.

This gives us the elements in and above the diagonal oa the 0 matrix indi.

cated In Eq, (14•.•.11).

Eq. (14.4.11) shows the major product moment of the standardized score

matrix as a function of the basic diagonal and basic orthonormals. To this

matrix we now apply one of the principal axis solutions indicated in pre-

vious chapters. This may be carried to any number of factors desired, ac-

cording to how much of the variance we want to account fort or what other

criteria we may have for stopping the factoring.

The factor loading matrix a is indicated in Eq. (14.4.12). Here we

see on the right hand side that first we postmultiply the transpose of the

raw score matrix by the P matrix calculated from Eq. (14.4a.l). This, it

should be recognized, is precisely the principal axis factor score matrix

for the normalized score matrix, That is, Eq. (14,4.11) gives us the pro-

duct moment matrix we would have obtained if we had normalized the X matrix

first by columns and then pontmultiplied this normalized matrix by its trans-

pose.

The next step in the calculation of the a matrix, as indicated in Eq.

(14.4.12), is to premultiply the product in parentheses by the square root

of the diagonal matrix calculated in Eq. (14.4.4).

It should be observed that the major saving in computations is achieved

when the number of variables is much larger than the number of attributes.
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ActuallY, as can be seen, the steps involved in Rqo. (14,4.12) through (14,,410)

are not; in general, more laborious than the calculation of the correlation

matrix in which the minor product moment of the standard score matrix Is In-

volved. There is# however, an additional multiplioation indicated In Eq.

(14t.•12) in which the factor s0ore matrix Is postmultlplied Into the trans.

pose of the raw score data matrix. The computations for this operation ordin-

artly would not be great compared with the iterative procedures involved in

the solution for the basic orthonormal and the basic diagonals of a very

large correlation matrix.

14.,10 Numerical Example. We Illustrate the method with the same data

matrix uced in Chapter 12, even though it is a vertical matrix, so tIt we

may compare the results with those obtained in Chapter 12, Section 4.

Table 14•.•1 gives the major product moment of the standardized data

matrix* The number 108.0 at the lower left of the table Is the mum of the

diagonal elements. This should be equal to the product of the orders of

the matrix* This Is 12 x 9 m 108 and serves as a check on the computations.

Table 14,4•2 gives the normalized factor score matrix for the first

three factors. The rows of this table are proportional to the columns of

Table 12.,.2. The proportionality factor is/r or J-2.

The first row of Table 14.4., gives the first three basic diagonals of

the correlation matrix corresponding to the data matrix. These results may

be seen to agree closely with those of basic structure solutions for the

some correlation matrix in previous chapters. The second row gives the

number of Iterations for each factor. The body of the table gives the first

three principal axis factor loading vectors. These also agree closely with

those solved for in previous chapters,
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14,5 M4athematioal Pi'oot

We give below the proof that the ooaamtpttonal out•ine above does y•eld

the oonventional solution for the prinoipal axl. faotor loading matrix given

In previous chapters,

Oiven the raw scoors matrix L let

14 X X1(353.X, I
X(2)11

where X(2) measna a matrix of the squared elements of X,

2 D 2  (1..

d .D;2(z.5•

-X di

Frcm Eq. (114.5.5)

II..

Frcm Eq. (114.5.6)

1 1V dX' X d X' 1 1' 11 X d XI 1 11XdX' N + N

N2
(14.5.7)

Frcm Eqs. (14.5.1) and (14.5.T)

i X' - XdX -I M dXI -X dM 11 + 1 dM1' d (14.5.8)
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'At

8ubotituting Eq. (14.3,9) in Eq. (14.5.8)

Let

V X U

a ,, U14

From Eq. (14, Iiin Eq. (114.5.1o)

z XX -].V' -V' 1 al 1 (14.5.12)

Let

From Eq. n Eq. (14.5.12)

3 Z' X dXI -1W -W) ' (1Wi.5.1t)

Let

z zo

Frm Eqs. (14.5.14) amd (14.5.15)

*• XI . x. -d -. (X .w 6)
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otven the basto truoture fome

Yrem Eq@. (1.55 and (UI.3.1.8)

Q PI A dX I I if

Frciu Eq. (.14.5.19)

A X. P -X 11' P

Prom Eq. (14.5.19)

P' 3 . o (iI. 5.21)

Frau Eq. (14.5.21) in Eq. (.14.5.20)

Q * i . (x' P) (114.5.22)
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In Chapter 13 we considered the problem of nrigin or zero point as it

affects factor analytic solutions. We saw that we may work with raw scoar

matrices, deviation score matrices# or a number at combtnAtinns of these two

methods, We learned that we may factor right centered and left centered

matrices or both--that ia, matrices which have means subtracted freom the col-

,uns, those which have means subtracted from the rows, and those which have

means subtracted from both rows and columns.

We saw also that we may conduct factor analytic solutions based on pro-

cedures which may subtract or add constants other than means to the rows and/

or columns, and that these solutions vary according to the specific patterns

for adding constants to rows or columns. We indicated that there may be

rational procedures for determining what constants should be added, as in

cases where natural zero points are available, We showed in Chapters 4 and

13 that the unit for scaling one attribute may not be comparable to that for

scaling another, and that therefore rationales for making such scales coapar-

able may be of interest.

15.1 Kinds of Scaling

It is clear that if we have a large set of measures, such as physiologi-

cal, psychological, or other types, these may vary widely in comparability.

For example, height may be measured in feet and a test score may be measured

In terms of items correct on a 500-item test.

The conventional procedure, as itidinated, hac. been to reduce all these

to standard deviation measures. te have in general three types of possibili-

ties for scaling. We may scale by entities, by attributes, or by both. In
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any case Lt is well known that a particular factor analytic solution viii de.

pond on the scaling procedure. This is because the basic structure of a data

matrix is altered in a very complicated fashion if the data matrix is multi-

plied by a diagonal matrix.

ll.ol 3calLng by Attributes. We have already considered in gem detail

the reasons why the problem of scaling by attributes arises. Thisp of course,

means that we postmultiply a data matrix by a diagonal matrix. In the case

of a scaling procedure which reduces all variables to unit standard devi-

ations, we simply postmultiply the data matrix by the Inverse of a diagonal

matrix whose elements are standard deviations of the variables in whatever

units they are measured. This has been the traditional method of scaling

for factor analytic solutions.

It should be noted, however, that such a scaling procedure is specific

to the particular sample to which it is applied. If one used such a scaling

procedure on a particular sample and applied the same diagonal scaling matrix

to a data matrix obtained from sace other sample, he would not expect that

that variances for the new ample would be unity. In general these would

depart from unity to a greater or lesser degree. The tact that the normaliz-

ing scaling procedure is specific to a particular sample casts doubts on its

validity.

15.1.2 Scaling by Entities. The problem of scaling by entities has

not received much attention, or perhaps even been regarded as a relevant

problem in factor analysis proced,-ies. Certainly the question of origin by

entities is of both theoretical and prauttent importance in the analysis of

behavioral science data. We have seen how it arises it. the case of ipsative

type meatures in personality scales, It also arises in the case differential
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prediction problems, This we have discussed in Chapter 13, Obviously, the

shifting of origins by entities or rows of the natural order data matrix has

its analog in scaling by entLties, This implies formally of course, a multi.

plication on the left of the natural order data matrix by a diagonal matrix,

The question of what sort of diagonal matrix is appropriate for a given prob-

Lem depends on the partLiular interest of the investigators

One may assume, for example, that certain of the entities should receive

less weight than others in a factor analytic solution. It may be that because

of biased sample selection it might be desirable to weight certain of the en-

tities more and others less, to overcome the effects of bias. For example# if

one had selected a group of individuals so that in general the higher scoring

individuals were believed to be less well represented, compared to smwe target

population, than those in the lower group, then the former might be given

higher weightings. Therefore the diagonal elements of the left scaling matrix

would be larger for the higher group than for the lower.

15..ol Scaling by Entries and Attributes. It is now obvious that a

more general view of the scaling problem for a data matrix would involve scal-

ing by both entities and attributes. Here the formal mode], includes both pre-

and postmultiplication of the data matrix by diagonal matrices. One may make

a rather basic distinction, however, between the types of left and right scal-

ing matrices which might be considered. In the case of right diagonal scal-

ing matrices one might well have both positive and negative elements in the

scaling diagonal. For example, if one wLshes to reverse the scale for cer-

tain personality Ltem variables in a data matrix to change a negative stated

statemsent to a positive form, then presumably one would use a negative element.



However, In the case of the left diagonal multiplier$ it Is difficult to 0ee

by what rationale one might wish to give a negative weight to a particular on-

tity, In VneralD any left diagonal multiplier for the data matrix would Al-

most certainly have all positive elements,

Since currently there Is very little available on the rationale or tch.

nique of scaling data matrices by entities, and since no experimental or oam-

putational, work has been carried out, we shall not pursue the matter further,

We shall direct our attention to problems involved in the scaling of data

matrices by attributes,

15.2 Scaling by Attributes

15.2.1 The General Problem of Scale. We have already discussed a number

of considerations Involved in the scaling of a data matrix by attributes, or

the postmultiplioation of the natural order data matrix by a diagonal matrix.

We have pointed out that factor analytic results may vary considerably accord-

ing to whao scaling procedures are used. We have indicated that the Gordian

knot is usually cut by using standardized measures. Nevertheless, it would

seem desirable to have feator analytic procedures which are relatively Inde-

pendent of the scale. We shall now consider in more detail scme of the cri-

teria which suggest themselves in establishing scaling procedures.

15.2.2 Criteria for Scaling. One of the most obvious rationales for

scaling has been previously suggested--namely, that of using natural units

when they are available, lWe have indicated that in the case of the three

category matrix in which one of the slabs is an entity-occasion matrixp the

occasions regarded as attributes may already be in relative natural units.

For examples the measures of a set of entities on typewriting scores for suc-

cessive weeks are comparable both with respect to origin and scale. The
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variation in scores from one week to the next for this group of entities is

not some artifact of the method of evaluation, but may be of considerable

interest in itself. Unfortunately, however, such natural units are not avail-

able for much of the data to be subjected to factor analytic solutions.

We have already mentioned the possibility that the factor analytic pro-

oedure may be such that the solution is relatively independent of any seal.

ing diagonal matrix, We shall now consider some of the"e solutions#

1593 The Communality Problem and Scaling

Throughout the previous chapters dealing with specific methods of factor

analysis we have referred to the communality problem without being very speal-

fio as to what is meant by the term communality,. True, it is defined both

theoretically and cemputationally in texts on factor analysis. In general

it is said to be that part of the variance of a system which in common to two

or more variables. This is not a very precise definition.

The communality problem has also been discussed from a computational.

point of view. Here the problem is to determine the diagonal elements of a

correlation or covariance matrix so as to reduce the rank of the matrix. To

solve this problem we must decide whether we want to reduce the rank of an

experimental correlation matrix precisely, or whether we want to reduce the

rank of another matrix which resembles the original corrolation matrix as

closely as possible according to some criterion. But in the latter case we

have to define "as closely as possible."

The traditional approach has used approximations to the diagonal values

which enable one to account move accurately for the offdiagonal elements

with a smaller number of factors than is accounted for by using unity in the
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diagonals* We have seen that for correlation and reot4tal matrices one method
is to substitute the largest absolute offdiagonal element In a aolumn for the

diagonal element,

Those procedures, however# do not provide precise or rigorous definitions

or communalities, nor do they indicate an underlying mathematical model for

their determination. They are merely verbal and arithmetic procedures with

little reference to their interpretation or significance for the data matrix

from which the correlation matrix is derived. We have indicated In Chapter

4 that one should be able to account completely for the results of a factor

analysis in terms of the original data matrix rather than In terms of the

correlation matrix.

Perhaps some of the beat work on the camunality problem has been done

by Guttman (1958), Harris (1962), and earlier by Lawley (194o) and Pao (1955).

In general these investigmtors have been aware of the relationship of the

ccmmunalLty problem to the scaling problem. Implicit In their work is the

notion that the comnunality problem is really a scaling problem.

We shall therefore consider certain types of factor analytic solutions

which have techniques for solving the scaling problem built into them. These

arep In effect, methods which are independent of scale or in which the scal-

ing diagonal cancels out in the mathematical model.

l5,4 Characteristics of the Methods

All of the models to be considered have certain characteristics in common.

First) they are all special cases of the rank reduction methodj second, they

are least square or basic structure solutions; third, each solves for a scal-

ing diagonal matrix 1 and fourth, they are what may be called doubly iterative

solutions,
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15,4,1 special Case of nank Peduotion Method. •ach of the methods to be

considered is a special case of the rank reduction formulA in that the removal

of each factor results in a residual matrix which is of rank one less than the

previous residual matrix. Yurthermoroe each approximation to a factor matrix

is a rank reduction solution,

15,442 Least Square Basic Structure Golutions, All of the solutions

we shall consider are basic structure or least square solutions, with respect

to the scaled matrices@ This point will not be elaborated herep as It will

be clarified in the aomputational procedure and the mathematical proofs,

15.,4#3 Solution for Scaling Diagonals* As Implied by the previous dia-

cu~sion, all of the solutions to be considered solve for a scaling diagonal

matrix. It is to be observed, however, that the procedure used to solve for

this scaling diagonal matrix varies considerably from one method to another.

Zn two of the models, a single scaling diagonal matrix in solved for. In the

other model, the scaling diagonal matrix is different for each factor vector.

In this latter model, a scaling diagonal matrix is found for each residual

matrix. The solution, however, is again independent of any particular scale

that we start with, such as in the normalized data matrix.

15 .4. 4  Doubly Iterative Type Solutions, All of the methods to bi con-

sidered might be regarded as doubly iterative, because not only does one

iterate to the solution for a factor vector or matrix, but one also iterates

to the scaling diagonal. This is because the scaling diagonal matrix is it-

self a function of the factor loading vectors, which in turn are a function

of the scaling diagonal matrix. One of the consequen-res is that the solution

may be vory laborious and costly, Even with high speed computersp the cost

and time may be excessive if the number of variables or attributes is large,
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1*,5 Kinds f Oof ltions

We shall consider six different kinds of solutions which are independent

of scale# These may be divided into two general classes,

The first of these classes we call the specificity type solutions@ The

model on which these solutions are based was first proposed by Lavleoy (191.0)

and later developed in essentially the same form, but from a somewhat different

set of hypotheses and assumptions, by Rao (1955),

The second class of solutions may be called the comunality type solu-

tions. These are based on a general model developed by Horst. Beginning In

1950, the method was presented in lecture notes at the University of Washing-

ton but these were not published, More recentlyp Kaiser, In personal acm-

munication and in conference presentations; proposed a related type of pro-

cedures.

Both the specificity and the ccmmunality types of solutions may be di-

vided Into 'hree different variations* The first of these we shall call the

successive factor method. It requires the solution of a single factor vector

at a time* With the solution for each factor vector, a residual matrix is

calculated and another factor vector is calculated from the residual matrix.

This type of solution is analogous to the single factor residual solutt.on

outlined for the centroid and the basic structure or principal axis methods

in Chapters 5 and 7, respectively. With the solution for each factor one ob-

tains a scaling diagonal matrix which is a function of the elements of the

factor vector itself.

The second type of solution for both the specificity and the communal-

ity models may be called the factor matrix solution. Here one makes some as-

sumption as to the number of factors in the set and begins with some crude
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approximation matrix of this order for the factor matrix. Dy a process of

successive iterations one converges to the factor loading matrix,&n to the

soaling diagonal which is a function ot all of the factor vectors.

These two typoe of solutions do not In general give the me results

for a specified number of factors, The scaling varies from one factor vector

solution to the next in the residual method, whereas it converges to a single

diagonal matrix when one iterates to all the desired factor vectors ihul-

taneously.

There is a variation of the factor matrix method which combines the

features of both of the othero. This we shall call the progressive factor

matrix method* Here one begins with the solution for a single factor and

then successively adds factors to the factor loading matrix without ever

computing residual matrices,

15.6 Specificity Successive Factor Solution

We shall first take up the specificity scaling method for each of the

three variations: the successive factor, the matrix, and the progressive

matrix solutions. First we shall consider the successive factor type solu-

tion,

15.6.1 Characteristics of the Solution. This method is characterized

by the fact that only one factor at a time is solved for, after which a resi-

dual matrix is calculated, the next factor loading vector is calculated from

the residual, and so on.

All of the specificity types of solutions are similar with respect to

the scaling unit solved for. The scaling unit is such that the variance of

the resealed variables is proportional to the reciprocal square root of their

residual variances. That is, we define these residual variances as the
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original. varianoe of the variables lioo the amount of variance accounted for

by a given factor or sat of faotorsp depending on which type of solution is

used. Zn the successive tfator solution# the first scaling constant for each

variable is proportional to the reciprocal square root of the difference be-

tween the original variance ot the variables and the variance aor'unted t•o

by the first factor. The first tactor is then removed from the covariance

matrix to yield a residual matrix. This residual matrix is then scaled In

the same manner as awe subsequent residual matrices.

15#6,2 Computational E'quations

1.%6,2a Dfinition of Notation

C is a correlation or covariance matrix.

DC is a diagonal matrix of the diagonals of C,

0 a is an arbitrary vector.

DIa is a diagonal matrix whose elements are from the vector 1a*

iP is a tolerance limit.

15.6.2b The Equations

0a - C 1 (1' C 1)4 (15.6.1)

OD2 (DC . D2 a )- (15.6.2)
0

a C o•oOa (15.6.4)
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D', (D, D'45.6-7)

I

U - Wa (:L5.6.8)
L.D.. oW Do ) (3.5.6.7)

C LU i sa 1.6.71

aCI (:5.6.1o)

L+l' iw •t1x..1.

a31+. CIL " tP (15.6.12)

i+l * a1  (15.6.13)

2C C- a.ol (L0.6.l•)

15.6.0 Computational Instructions. In this procedure# as in all of the

methods in this section, one may begin with either a correlation matrix or a

covariance miatrix scaled in any convenient fashion. Ordinarily it is probab-

ly best to work with correlation matrices. These are familiar to most investi-

gators and are convenient from the point of view of number or digits carried

in the elements of the matrix*
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All of the diagonals are unity, of course, In the oorrelation matrix@

in any casel for all of the methods to be disoussed, unity is used in the

diagonals of correlation matrices# and variances are used in the diagonala

of covarlance matrices,

We begin with sace arbitrary approximation to a first factor loading

vector, This can be, for example, a first centroid vector, as Indioated In

Eq. (13.6.1). It could also be a principal axis factor loading vector.

The next step is indicated in Eq. (15.6.2). Here one Gets the differ-

ence between the diagonal elements of the covariance or correlation matrix

and a diagonal made up of the squared elements of the vector in Eq. (15.6.1).

This In indicated on the right hand side of the equation. This diagonal

matrix in then inverted to give the diagonal matrix on the left of the equa-

tion, It will be recognized that this matrix on the left is a diagonal matrix

of the reciprocal of the difference between two diagonal matriceso the first

of which is a diagonal ratrix of varianceelaaid the oecond'or which is a dtagon-

al matrix of the variances accounted for by the first approximatioa factor.

The next step i8 indicated in Eq. (15.6.3). Here we calculate a vector

U on the right of the equation. It is obtained by premultiplying the vector

of Eq. (15.6.1) by the diagonul matrix of Eq. (15.6.2).

Next we calculate the vector in Eq. (15.6.4). This, as shown on the

right of the equation, is obtained by postmultiplying the covariance or cor-

relation matrix by the U vector calculated in Eq. (15.6.3) and subtracting

frcm the product the vector 0a calculated in Eq. (15.6.1).

Nov we calculate the scalar quantity indicated by Eq. (15.6.5), Here

we get the minor product of the vectors calculated in Eqs. (15.6.3) and
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(5.6.I.) and take the reciprocal. square root ot this products

Then we get the first rank reduotion approximation to the first factor

loading vector, as indicated in Eq. (1596.6) by the vector Ia on the left of

the equation. This is seen to be the vector W of E~q# (15.6.A4) multiplied

by the scalar quantity of c0 oa Eq. (15.6.5).

Etq. (15.6.7) gives the ith approximation to the D- matrix as the inverse

of a matrix obtained by subtracting frem the diagonal of the C matrix the cor-

responding squared elements of the current approximation to the tactor load-

ing vector. As will be seen, therefore , Eq. (15.6.7) gives a diagonal matrix

which is an approximation to the inverse ot the diagonal of the residual

matrix*

The general equation for the U vector is given in Eq. (15.6.8)0 This is

simply the current approximation to the factor loading vector premultiplied

by the diagonal matrix of Eq. (15.6.7).

The general equation for the If vector is given by Eq. (15.6.9). This is

obtained by postmultiplying the correlation matrix by the U vector of Eq.

(15.6.8) and subtracting frc•m the product the previous approximation to the

factor vector.

The ith approximation for the scalar quantity a is the reciprocal square

root of the minor product of the vectors given by Eqs. (15.6.8) and (15.6.9),

as indicated on the right hand side of Eq. (15.6.10).

The general equation for the 1+1. approximation to the first factor load-

ing vector is given by Eq. (15.6.U). This is the W vector of Eq. (15.6.9)

multiplied by the scalar of Eq. (15.6.10).

To determine whether we have gone far enough in our approximation, we

can ccmpare successive approximations to the a vector given by Eq. (15.6.11).
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However, it it probably simpler to use the criterion indicated by Eq, (15,6.12),

This is the difference between successive a values, These a values should, In

general, increue In magnitude or stabilize so that when the P value indi=

sated by Eq, (15e6912) is nufficiently small, we may stop the iterstions

for the first factor vector#

When the iterations are sufficiently close, we may regard the £+l ap-

proximations to a as the first factor loading vector, nmelyo a 1., as given

in Eq. (15.6-13)0

Next we calculate a residual matrix C as indicated in Eq. (15.6.14).
2F

This is obtained by subtracting the major product moment of the factor load-

ing vector frcm the covariance or correlation matrix.

We now proceed through the same sot of computations outlined in Eqa.

(13.6.1) through (15.6.1,), except tUat these are performed on the residual

matrix given by the left side of Eq. (15.6.14), rather than on the original

matrix.

Each successive residual matrix is calculated as in Eq. (15.6.15). Then

the routine outlined in Eqs, (15.6.1) through (15.6.14) is applied to each

of the residual matrices. The criterion of when to stop factoring may be

one of those suggested in previous chapters,

15,6.I Numerical Example. A numerical example of the method is given

below. We use the same correlation matrix as in previous chapters. This cor-

relation matrix is repeated for convenience in Table 15.6.1. The arbitrary

vector for each of the four factors was taken as the unit vector. The solu-

tion is doubtless dependent on the arbitrary vectors, and currently no "best"

method is available for determining these vectors.



he first row of Table 15,692 gves the number of Iterations for each

of the first four factors, The second row gives the variance accounted for

by each factor, The body of the table gives the first four factor loading

vectors# As in the methods of previous chapters; only the first three factors

appear "significant."

it is interestinS to note that the factor loading vectors beer little

resemblance to the principal axis factors of Chapters 8, 9, and 10. As a

matter of facts they resemble more closely the factors given by the group

centroid methods of Chapter 6. It is not clear, however, to what extent the

factors might change if vastly more iterations were taken*

15.7 The Specificity Factor Matrix Solution

15.7.1 Characteristics of the Method* In this method the residual

variance scaling matrix is based on all of the factors to be solved for#

rather than on a single factor as in the method Just outlined, Therefore

we do not have a rescaling after each factor vector, The method is differ-

ent also in that# instead of solving for a single factor at a time and getting

a residual matrix for each cycles we start with a rough approximation to the

complete factor matrix In which scme specified number of factors is assumed*

We then iterate successively to the factor loading matrix and to the scaling

diagonal whose elements are the reciprocal square roots of the residual vari-

ances.

15.7.2 Computational Equations

15,792a Definition of Notation

C is a covariance matrix%

DC is-the diagonal matrix frcm C,



Table 15.6,1 - The Correlation Matrix

1.000 0,829 0.768 0,108 0.033 0,1o8 0.o98 0,309 0,351
0.8 1.00 0.775 0..15 0,061 0,125 0.23 0,347 0.369
0.768 0.775 1.000 0.272 0.205 0.238 0.2 0. o0,8
0.108 0.115 o.72 1.000 0.636 0:66 o0..29 05,3 0.. 36
o.o33 o.061 o.05 0.636 1.00o 0.79 0o.138 o.091 0.25
0.108 0.12s 0.2,8 0.626 0.709 1.000 0.190 0. 1 0.291
0.298 0:323 0.2' 0,249 o•.38 0,190 1,000 0.654 0,527
0.309 0.347 0.271 0.183 0.091 0.103 0.654 1.000 0.•51
0.351 0.369 0.385 o.369 0.254 0.291 0.527 o.541 1.000

Table 1596@2 . 5•pcif.icity Successive Factor Method. NMiber of iterations,
Variance Accounted for, and First Four Factor Vectors

24 21. 30
2.9730 2.0250 1,1978 0.0898

0.891o -O.1o76 .0.0480 -O.oII6
0.9o67 -o.o0867 .0.0182 .0.0654
0.8572 m.914 0.0932 o.o084
40.2151 0.7438 0.0475 0.2218
0.1389 n.8266 -o.o82 -0o.o0o5
0.2025 0.7968 -o.o6o -o.o0587
0.3911 0.1770 0.6572 0.0118
0..3957 0.1012 0.7303 -.00627
0.45,9 0.2908 0.4556 0.1360



a Lis an arbitrAry factor matrix approximation of sptoifisd Wi4th,

it Is the tth approximation to the factor matrix,

D sit in the diasona3. matrix of aal

itIs a trianular matrix.

P is a tolerance limit,

15,7.2b The Equations

° "OD e (D Do e " 0 (15.7.1)

U .o ' o (15.7.2)

o 00t

L ow o.

0

D2 (Da~D - g) Di 7
ii
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LU LD2 to(~ 78

LW U 0 tt t (is,7,9)

LB * 1 , LU (l•,,7.10)

t 8

S- tr •÷t)

15.7.3 Computational Instructions. In this variation of the spocifi-

city method we postulate a given number of factors and begin with an arbit-

rary factor loading matrix including the assumed number of factors. This we

may obtain from the methods of previous chapters.

We first calculate a diagonal matrix as In Eq. (15.7.1). This is ob-

tained by subtracting from the diagonal of the covariance matrix the diagon-

al of the major product moment of the arbitrary factor ioading matrix. Then

we take the inverse of this difference matrix as indicated on the right of

Sq. (15.7.1).

The next step is to calculate the Vmatrix, as indicated in Eq. (15.7.2).

Here we premultiply the first approximation to the factor loading matrix by

the diagonal matrix calculated in Eq, (15.7.1).

We then calculate a W matrix, as in EIq. (15-.7.-3). This is obtained by
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poutmultiplylng the aovariance matrix C by the • matrix calculated In Xq.

(15.7.2) and subtraoting frm the product the arbitrary approximation to the

Maotor matrix,

Next we calculate the matrix I in 9q. (15-7.-), This Is the minor pro-

duat of the matrices calculated in Eqs. (15.7.2) and (15.7.3)o It can be

seen by the definitions of these matrices that the product is symmetric*

We nov indicate a supermatrix of the matrices solved for in eqs, (15.7.5)

and (15.7.4), This Is given in the right hand side of Eq. (15.7.-5). The

left hand side of Eq. (15-7.5) indicates a partial triangular factoring of

the supermatrLx.

The lower part of the left partial triangular factor is then the first

approximation to the factor loading matrix, as indicated on the right of Eq.

The general equations are given in Eqs. (15.7.7) through (15.7.13). Eq.

(15.7.7) gives the general equation for the D_ matrix. This, as indicated on

the right, is obtained by subtracting from the diagonal of the covarianco

matrixthe diagonal of the major product moment of the current approximation

to the factor loading matrix,and then taking the inverse of this difference

diagonal matrix.

Eq. (15.7.8) gives the ith approximation to the U matrix, which is the

current approximation to the factor loading matrix premultiplied by the di-

agonal matrix of Eq. (15.7.7).

The ith approximation to the W matrix is given by Eq. (15.7.-9). This is

the product of the covariance matrix postmultiplied by the U matrix calcu-

lated In Eq. (15.7.8)t less the previous approximation to the factor matrix.
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Sq. (1507.10) indicates the Lth approximation to the symmetric 8 matrix,

which is the minor product of the U and W matrices calculated, respectively#

in Eq#, (1574.8) and (15.7.9)0

We indicate in general the supermatrix made up of the matrices calcu-

lat14 in Eqs. (15.7.9) and (15.7.10), as on the right hand side of Eq.

(15.7.11). We then indicate the partial triangular factoring of this super-

matrixp as shown on the left side of Eq. (1.7.ii).

The lower matria element of the supermatrix on the left hand side of

Eq. (17.7.11) gives the next approximation to the factor loading matrix, as

indicated in Eq. (15.7.12). It can be proved that the triangular matrix in-

dicated In the upper element of the left hand matrix in Eq. (15.7.11) con-

verges to a diagonal matrix whose elements are the largest roots or basic

diagonal elements of the scaled covariance matrix.

We then assume that the traces of successive t matrices or the sums of

their diagonal elements will converge to same value. Therefore, as indicated

in Eq. (15.7.13), we take the ratios of successive traces to get H values,

When these are sufficiently close to unity the computations cease.

15.7.1 Numerical Exnmple. We use the same correlation matrix as in the

previous methods. For the aabitrary matrix we take the first four principal

axis factor vectors of this matrix as found in previous solutions.

For convenient reference the first four principal axis row vectors are

given in Table 15.7.1.

Table 15.7.2 gives the successive traces of the t matrices for thirty

iterations.

The first row of Table 15.7.3 gives the variance accounted for by each



of the first four factors, The body of the table gives the first four column

factor loading vectors. These factor loading# bear little relation to the

principal axis factors of Table 15.7,1. However, again it to apparent that

the fourth factor my be Ignored, While the factor loading# are not the sam

within deoimal error as those of Table 13.6#3p we may compare factors with

the three highest loadings For Tables 15.6.3 and 15.7.3 we have as compar-

able factors respectively, factors I and 2p 2 and 3, 3 and 1 Again it may

be that a great many more iterations would yield a matrix considerably dif-

ferent from that of Table 15.7.3.

15.8 The SpocirLaity Progreoive Fa•ator Matrix Mathod

15e8.1 Characteristics of the Method. This method is essentially a

combination of the previous two methods, It uses the same scaling rationale--

that is, the reciprocal square roots of the residual variances of the attri-

butese. It starts with a single factor and proceeds by adding successive

factors.

It differs eusentially from the first methodp however, in that no rest.

dual matrices are calculated. It is similar to the second method in that

only a single scaling of the variables is solved for. It differs in that no

assumptions are made as to the number of factors required.

15.8.2 The Computational Equations

15.8.2a Definition of Notation

(Di subscript designates a matrix of width k.

Other notation is the same as in Section 15.T72a.



Table 15,7,1 - First Four Principal Aisd How Faotor Vectors ot the ororela.
tion Matrix

0.72.7 0,73 0.773 0.56 o.46,) o.510 o.64o o.615 0.715
0..93 0o.78 0.296 .0.69 -0444 .0.694 0.68W 0.166 -o.o1
0.050 0.322 0.4o6 0.068 0.181 o.188 0.588 -0.621 -0.69
0.0"0 .0.056 0.009 0,102 -0.115 .0.129 .0.288 0:.165 0.66

Table 15*.7.2 - Traces of uoceassveo t Matrices for Thirty Iterations

67.3460 54.1334 54-.0273
57.4.669 514.12146 514.0201
55.3702 0.17147 514.0130
51.6664 0.1646 54.0061
514.39914 0.21453
514.2859 0.14108
54.2323 o.2609
514.2035 0.31148
54.1855 o.3076
54.1725 0.3691
514•616 0.o114
514.1518 54.o421
54.11425 514,031.6

Table 15*.7.3 S peciticity Factor Matrix Method. Variance Accounted for
and Column Factor Vectors for Flrat Four Factorm

2.8295 1.6250 1.6337 o.6243

0.5091 0.7508 -0.0229 0.0439
0.5297 0.7447 -0.0087 0.0093
0.5390 0.6577 0.1617 0.0735
0.4148 .0.1135 o.6337 .0.0521
0.3020 .0.1292 0.7893 -0.0128
0.3476 -0.0770 0.7470 -0.0199
0.5858 0.0322 -0.o403 -0.5875
0.5901 0.0384 -0.1302 -0.5152
0.9611 .0.1897 -0.0760 0.0559
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1,8°2b The Equations

O8(k.) ( (,k 1 ,.. )(1.8.1)

Oa(k) " (k)

oUL(k) A Oa(k) (15.8.l)

oW(k) 0CU(k) - o.(k) (15.8.5)

oW(k) otjk) "U $ (s.8.6

otOW(. k) Oti.k)0(

iDk . ( DC - D.,g( ) La k)" ( .8.)

LU(k) - LD k ((k)..9)

iW(k) a C jiU(j) - •a(k) (15.8.10)

it(k) t.tik) - ijWk) iU(k) (.5.8.n)

i÷1,•(k) .iW(k) LI'•(z..•
•"(k)

15.8.3 Canputational Instructions. This method begins wiAth an arbit-

rary vector as in the first specificity type of solution. The method for

getting the first factor vector is the same as in that solution.
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We next proceed to indicate a factor loading matrixp as indicated in Eq.

(15,8,1), where now k-l to the number of factors currently solved for,

We then indicate an augented matrix to which one more factor has been

added, as indicated in Eq. (15.8.2). To begin with, the first matrix in the

parentheses on the right of Eq, (15.8.2) is simply the first factor loading

vector a 1 . This in auiiented now by a second arbitrary vector which my

be assumed to be a reasonable approximation to the second factor loading

vector.

We then have, as in Eq. (15.8.o)p a diagonal matrix which ism as in-

dicated on the right, the reciprocal of the diagonal of the covariance matrix

minus the diagonal of the major product moment of the matrix In Eq. (15.8.2).

We indicate in Eio (15.8.4) the matrix of Eq. (15.8.2) premultiplied by

the diagonal matrix of Eq. (1,.8.•).

Eq. (15.8.5) is obtained by premultiplyLna the matrix of Eq. (15.8.4) by

the covariance matrix and subtracting the arbitrary approximation to the

factor matrix fron it.

Eq. (15.8.6) indicates the minor product mcnent of the matrices of Eqs.

(15.8.4) and (15.8.5) as a major product of a partial triangular matrix. In

particular, this could be solved for by means of the partial triangular factor-

ing of the supennatrix indicated in Eq. (15.7.-5) of the previous method.

Eq. (15.8.1) gives the first approximation to the factor loading matrix

of width k as the U matrix of Eq. (15.8.5) postntiltiplied by the inverse of

the upper triangular matrix of Eq. (15.8.6).

The general iterative type of solution is indicated by Eqs. (IG°8.8)

through (15.8.12). Here the equmbiona are, reapectively, the same as Eqs.

(15•83) thr'oitgh (Vi.8.'), except that now the preseL.ipt; bennmeo I for the
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Lth approximation. In this type of solution we may again iterate to some

convergence criterion for the trace of the triangular matrixp indicated on

the left of Eq, (15,Oo11). If the traces of two succesaitve t matrices are

sufficiently close, we may assume that the approximation is sufficiently

close for the current number of factorsp k,

Once this criterion has been satisfied, we sapin augment the currently

stabilized factor loading matrix by another arbitrary vector, which to pro.

sunably reasonably orthogonal to the current factor vectors and which is not

too poor an approximation to the next factor vector we wish to obtain.

We then proceed again through Eqs, (15.8.2) to (15.8.7) to get a first

approximation to the factor loading matrix with one more factor added,

Going through Eqs, (15.8.8) through (15.8.12), we continue to iterate,

increasing the value of subscript I until the solution has stabilized to come

specified tolerance with reference to the tracen of two successive t matrices.

We proceed to augment the matrix in Eq. (15.8.2) until we have accounted

for enough factors, according to acme specified criterion. This criterion

may well be simply the sums of squares of elements of a currently stabilized

a matrix, such as given in Eq. (15.8.12). The sums of squares of these ele-

ments arem, of course, the amount of variance accounted for by the given number

of factors.

15.8.4 Numerical Example. We use the same correlation matrix as in the

previous section. In this numerical example we use as the arbitrary vector

for each new factor the corresponding principal axis vector of the correla-

tion matrix.

The first row of Table 15.8.1 gives the variance accounted for by each

of the first four factors. The body of the table gives the first four factor

vectors. Again it appears that the fourth factor may be igncred.



Tabla 15,8,1 S Upecificity Frogressive factor Matrix Metho4. Variance
Avcount@4 for an4 First our Factor Vectors

3,394.6 1.8123 1.0936 0.2634.

0Mm2,1 o0,.381 -0.1503 -0.0012
0,8444 .0.3236 .0.1 32 0.0332
0.8203 .-0.1577 -.0•245 .0.0311
0.3659 o.6436 .0.2086 000o83
0,2814 0.7159 ,0:3664 0.0805
0.3410 0.6670 .0.3468 m.o579
o.5•,1 0.2126 0.4568 0.2343
o,544,5 o0.1373 0, p66 0.o298T
0.6458 o.346 0.o4095 -0.3276



l1,9 The Cmmunality Successtve Factor Method

We shal nov aconsider the first of the communality causs of scaling

methods, In thes methods we have the three different types of solutions--

namelyp the successive factor vector solutione the factor matrix solution,

and the progressive factor matrix solution. Thes methods are essentially

the same as the specificity scaling methods except that the scaling diagonal

is different, and no daponia matrix is subtracted from the correlation matrix.

Here the scaling constants are inversely proportional to the squar roots

of the variances accounted for by the vectors solved for, This principal of

scaling is just the opposite of that used in the specificity method, Zn the

specificity method the scaling is such that the variance unaccounted for by

the factors is the sue for all variables, while in the communality method

the scaling is such that the variance accounted for by the factors is the

some for all variables. Zn this latter procedure It is assumed that more

weight should be given to the variables which othervise would have less of

their variance accounted for by the factors.

We begin now with the computational equations for the successive factor

method.

15.9.1 The Computational Equations

15.9.1a Definition of Notation

C is a correlation or covariance matrix.

V is an arbitrary vector.

ia is the ith approximation to a factor vector.

D a is a diagonal matrix or the elements of is*
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15*9.lb The Equations
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w3.L~ - I -Hi (15.9.12)

a, " +a (±9•

2 C *a

kCz - 5a"ak .:k (15.9.15)

15,9.2 Ccmputational Instructions. The computational procedure tor

this method is the same as for the corresponding method in the specificity

olass of solutions, except that the D2 matrix and the W vector are calculated

differently*

By means of an arbitrary vector V we first calculate the rank reduction

a vector as in Eq. (15.9.1).

Next we take the inverse of the elements of the 0a matrix given in Eq.

(15.9,1) to construct the D matrix given in Eq. (15.9o2). This is a diagonal

matrix of the inverse of the elements in the vector given by Eq* (15.9.1).

Eq. (15.9.3) indicates U as a vector of the elements of the D matrix

given by Eq. (15.9.2).

Eq. (15.9.4) is the C matrix postmultiplied by the U vector of Eq.
(15.9.3).

Eq. (15.9.5) is a scalar quantity which is the reciprocal square root

of the minor product of the vector* of Eqs. (15.9.3) and (15.9.4).

Eq. (15.9.6) gives the W vector of Eq. (15.9,4) multiplied by the scalar

of Eq. (15.9.5).



Eqso (13.941) through (1..2)indicate the iterations as in the ania2L

ogous specificity method.

Eq. (15.9.12) indicates the tolerance limit which to asasumed to givea
sufficiently close approximation.

The i+1 approximation to a,2 is then taken as the first factor vector,
as Indicated In Sq. (15.9.13).

Eq. (1509.314) gives the first residual matrix as In the apecfilalty
method,

Eq. 1..5 gives a generalization of Eq. (5.9.9~14).

The procedures for Eqs. (15*9.1) through (15.9,13) are applied to the

successive residual matrices.

15-9,3 Numierical Example. We us. the same correlation matrix as in
the three previous examples to illustrate this method. The unit vector in
taken for the arbitrary vect'irso The computations are a little simpler with

respect to the D matrix,, since it involves only the factor loading vector
and does not involve elements from the covariance matrix.

The first roy or Table 15.9.1 gives the number of iterations for each
or three factors. Th. second rov gives the varianc, accounted for by each
factor. The body or the table gives the first three factor loading vectors,

15.10 The Communality Factor Matrix Solution

15.10.1 The Ccmoputational Equations

15.10.1a Definitions of Notation

C is a covariance or residual matrix.

iis the tta approximation to the factor matr-ix.
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Table 13.9.1 - Cuumwta1ty Suoaeuuive 4aator flolution, Number of ?tora~ton.o
Variance Aoaouwt@4 for, an4 first Three hotodr

5 30 30
3.7106 1.8969 1.3096

0.6398 0.3749 0.4982
0,6639 0.o7: . 0,4818
0.7117 0.2347 0.5164
0,6326 .0.51 .002927
05685 ,0.6786 0.0257
O,6OM ,0,6347 0.0133
0,6351. 0,3527 -0,44016
0.6o53 0.010 -0.1655
0.7002 0.139 ,.0.222
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D .g is 4 diagonal matrix of the diagonal* of a•. I@

it a triangular matrix*

91 is a tolerance limit.

15.10.lb The Equations

D (15910.1)

ot 0" OP 0 (15.10.2)

ow c ou (1s.o.•)

0t 0t' " ow' ou (e5.0.14)

*a - w ot'' (15.10.5)

iD2  -n "a (D5.10.6)Da ( 1 )

*w.a ~ (15.10.8)

t t' W I U

i i I (15.10.90)

tr (i+t) I - H1  (15.10.11)

15.10*2 Computational Instructions. The computational instructions

for this method are almost identical to those of the corresponding specificity

factor scaling method$ except that again the D matrices of Eqs, (15.10.1)



101

and (11.10.6) an4 the V matrices o rqs. (1J5.10,3) and (1ý.10.8) are calou.

lated differently. Z•t will b #e@n that the D matrices ane obtaine by

taking the reciprocal of the dasgonAl of the major product monent of the

factor loading matrix# rather than by subtracting this diagonal from the

original diagonal of variance.. This difference In the calculation of the

D matrices reflects the diffterence in the underlying rationalo of the metIod.

The W matrices are different in that they do not involve the subtraction of

the current a matrix.

it will be noted that Eqs. (15.10.4) and (15.10.9) indicate the minor

product of the W_ and the U matrices as the major product moment of partial

triangular factors. These equations do not explicitly indicate the partial

triangular factoring of a typo 3 supervector, an indicated In Eqs. (1e.7,5)

and (15.7.11). However, the coaputations may be carried out in the same

fashion.

1%.10.0 Numerical Example. Apian we take the same correlation matrix

as in the previous illustrations, We also take its first four principal axis

vectors as the arbitrary matrix.

Table 15.10.1 gives the first four factor loading vectors fur the cor-

relation matrix as determined from the rescaled matrix* These are consider-

ably different frco those in Table 15.9.1.

15,11 The Communality Progressive Factor Matrix Method

1.11A.1 Computational Equations

15*11.la Definition of Notation

C is the covariance or correlation matrix.

ia(k) is the ith approximation to a factor loading matrix of vidth

ke
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Tablo 5,10,1 - Commur•aIty Faotor Matrtx Method. ?.rot Four rhator Vectors

0.6927 0.511. o,36104 .0,03,12
065 o.5o22 0,o."6 -0.o058
0,7593 0.,15 0.4158 0.0135
0.5903 -o.6276 0,0442 0.16'18
0.4ý992 -0072 O.5.1528 -o.•3,4
0.5515 .0.6716 O.1633 -O.1568
0.6369 O.1•O ,.0.590oi ,.0.28
O.-6o8 O.2166 -0.6236 -0.1320
0.7053 0.0158 -0.3522 0o.*5)
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D A( lm is a matrix of the diagonal of i a(k) talw)

lj.11.lb 'The SquAtions

Oa(k) Oa~c)

OU(k) OD~k) Qa(k)

OWc~c) n C OU(Ic)(1..)

Ot(k) Ottk) n0$() 0 (Ic) (~u6

lD(k) -0 (k)0 o(k)(5.1)

±U~k) - ±Dk) 1a(k~)

i"(k) C U(kt)

i*'k i' 4 (k) i k (15.11-120
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15,11.2 CouputAttOnal Inatruotions# Here the couputattonal procedure

is esentially the same as that of the correuponding specificity method, ex-

cept that aspin the D matrices awe calculated only as the major product mament

of the factor loading matri* and the matrices do not involve the subtraction

of the current approximation to the factor loading matrix@

15.11.93 Nmerical Example. The correlation matrix is the sam as in

the previous examples.

The first row of Table 15.11.1 gives the variance accounted for by eaoh

of the first three factors. The body of the table gives the three factor

vectors,

Although the three comunality scaling methods give different results,

the general orders of magnitude of the factor loadings compare favorably with

one another and with the corresponding principal axis factor loadings. The

signs for corresponding elements of all four sets are the same for the first

three factors.

15.12 Mathematical Proofs

15.12.1 Proof of the Specificity Successive Factor Method

Let C be the correlation of the covariance matrix, and consider

C - 2 -a a# - (15.12.1)

where a is a vector or matrix of specified width and

S(D D' (15.12.2)

lie let
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Table 14.11,1 - CcmunalLty Progressive Faotor Matrix Method. Varianoc
Aooounte4 for and ?trst Three Faator Vectors

0.6901. 0.14932 0.ý969
0.7306 0.3105 0, 711
0. 8814 -0.6275 0.0621
0.:1.08 -0.727 0,16i13
0.5M42 -0.674.6 0 1763
o,660o 0.13258 -0.376

o0?7,76 0.0312 .,0.4o6
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D(a 00) a al~2~ ii

We may begin with same approximation to the first principal axis vector such

as the centroid, We lot this vector be O`l and calculato

D2  a (,) . D 2
0 OIL

Then consider

oP s a o D - oD' 2 1 0D2 Oao' 0D (C. D'2) oD e14 (15.12.6)

which in a rank reduction torm,

we. lot

oU oD2 o (15.12.7)

From 1qs. (15.12.6) and (15.12.7)

•,.(C - oD'2) oU (.Up (C D-2 q.' 14o] (15.12.8)

If we let

o " C ou- (15.12.9)

and
1.

(15.12.10)

"Then from Eqs. (15.12.8), (15.12.9), and (15.12.10),

0" W o0 a• ••
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In general, then# we have

D ) (2D.12.D2)

-u . -D • (1s.12.•))

• 1 (15.12.15)

L

We may continue until !a ta!bilizos and then calculate the residual

*c a ' ~ (1.5.12.1.7)

LU L D L a).,

•iie operations oh n are the some as for C. Successive residual 1C' s may be

obtained to a specified number or factors.

We show in Section 15.12.7 that the solution is independent of scale.

15.12.2 Proof of the Specificity Factor Matrix Method

Let a be a factor loading matrix of specified width. We may still use

Eqs. (15.12.1) throuGh (15.12.7) without loss of generality. We now, how-

ever, introduce

OWttI (15.12.13)

Analogous to Eq. (15.12011), we now write

a W oo (15.12.19)
00|
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In gneral then, tor I of any widthp we have

L 2 (n0 " D°ap) 4  (15.1,2a)
2

V 1D 2 i

. W Vu La (15.12.22)

t t (1t.1o.o)

These iterations may continue until

tr (1 4 1t) - tr (it) - P (15.12.25)

ror P sufficiently small. Then it will approach the basic diaganal 5 of

DCD-I - QQ' (15.1.26)

and

D8 - a cg (15.12.27)

That this solution is independent of scale is shown in Section 15.12.7.

15.12.3 Proof of the Specificity Progressive Factor Matrix Method

Let Eqs. (15.12.20) through (15.12.24) be the iterative procedure for a

of width k. In particular, k may be 1. Continue until Eq. (15.12.25) is

satisfied and indicate

a(k) - (al ... ak) (15.12.28)

1!
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Let

Uak• - *,. e D. 0~,a) (15.12.29)

where a is an arbitrary vector dtittnct from all the preceding s to and

preferably orthogonal to theme

Then lot

o . (D (k+) (.12.0)

ou 0 D 2 o(k+1)

OF C . - 0a(k+l) (15.12.-32)

"o otel (15.12.,33)

and Ln g•neral

I (DC - D 1kl a(~)- (15.12.35)

* . DD2 a6(k+l) (15.12.36)

• C 1u . ia(k+l) (15.12.37)

t t w' t U (15.12.-38)

+ Lw 1t'# (15.12•.39)

We may continue until

±t(k+l), (k+l) < 0



1-0

or soowner#

Here almo the solution is independent of scale, as shown in ecotion
* 1•,12.7,

15.12.14 Proof of the Ccnmnality Successive Factor Veutor Methel4

Lot C be the oovarianoe matrix an4 consider the rank reduction vector

given by

oft .C v(v C v)4 (..2,•

where V is arbitrary.

We Indicate a diaional of the eloments of 0 a by

OD a DO1 (15.1.2.42)

an .setl let ft O C0D2lit
In general, lot

ani

1+1a .C LD2 D L (Ia' LD2 C I D 1,)" (15.12.45)

Let

Du. •1 (15.12.46)

Frcm Eqs. (15.12.44) and (15.12.46)

1Uw D2 a (15.12.47)



F ?rom~ rq. (1 2.147) In Eq (150121.45)

(L*I) C IU (lU' 0 Lu)' (M5.12.Ma)

From, ego, (1.5,12.144) and (1.5.12.4.7)

1 D t~u (1 0.4219)

ZI we let

LW - C t (15.3=.2.o)

w have as the omputational oequence

D U (1.12.5)

c+ i (15;.12.52)i iu

L~a m W a,(5125

We may continue Eqs. (15.12.51) through (15.12.54.) until a, stabilizes, at

which point

ja. a 1  (15.12.5)

That this solution is independent of scale can be readily seen by writing

the general form fran Eq. (15.12.45) as

C di 1 (1' D- C D' 0 (15.12.56)aa a
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Then aonaider any scaling diagonal 6 suoh that

A A • (Di.12.57)

and

Substituting Eqs. (15.12.57) and (15.12.58) in Sq. (17.12.59)

Aa .ACA(d D I~ ) C'D; Aý (A D&~) jn 1]4 (15.12.60o)a a a

Eq. (15.12.60) reduces at once to Eq. (15.12.56).

Once a.1 Is obtained, we can solve for a residual matrix.

and operate on 1C an before to obtain a 2 . The procedure is readily gen-

eralized to any number of lactors.

15.12.5 Proof of the Communallty Factor Matrix Method

Let C be the covarLance matrix and consider the approximate solution

C-aa . 1C (15-12.62)

where the width of a is choscn.

We lot

and

D a *a (15i12-64)



Consider alsoIi

D D a ( ac' a)

j

We assum a of fixed width and start with, say, a prinoipal "is or some

other approximation to so We call this solution we let

OD D-I(15.12.66)
00

and

O Da (15.12.67)

We then -eonaLder the matrix reduction solution

1a~ Da m3 C~ (0 Op OD C Op 0cY Oz D C (15.12.68)

we let

2 0  (15.12.69)

Fon Eqn., (15.126a0) and (15.12.69)

,a 1a' - R 0U (OU no OU)" OU it (15.12.70)

We let

R OU (15.12-71)

0' t ) (15.12.72)

la - 0" Ot' (15.12-73)

or iii general.

I
°D % D•o'i (15.12.7h)

ana



a U(L Le V D I• W,, .7U

*t 1t w' tU (2.,.1277)

Le - iw it'' (2.12.7)

Sqs* (15.12.7T) through (15.12.78) continue until In

tg(1 +, t) - tr ( -t) P (1..2.79)

P In sufficiLntly swall, As I increases, 1 viii approach a diagonal matrix

or the baste structure of D R D or, In general,

Dz " iýt (1.5.12.60)

We can show br Section 15.12,7 that this procedure is Independent of scale.

15.12.6 Proof of the Communality Progressive Factor Matrix Method

Let Eqs. (15.12.74) through (15-.12.78) be the iterative procedure for a

of width k where k > 1. We continue until Sq. (15,12.79) is satisfied and

let

"1)1 (a"*1  $ as.) (15.12.81)

lie then let

4(k+1) (a(k) , 0a) (15.12.82)

where 0a is determined in some suitable manner. In particular, we may consider



and let

0" a I (i' t i)" (15.12.a'))

where obviously the operations in sq, (15,12.84) can be performed directly

with G and : Uk so that k+,C need not be computed,

We then lot

0 2 " 4(k+l) O'lk+l) (15.12.85)

0  D " o (k+1) (1O.12.86)

oWm.c oU (15.12.8'7)

ot ot . w, u (15.12.8)

00 0 0

and in general,

2 . -,k 1)i (ciIu 122 D (15.12.90)1. ~ ~ l a(1C.1)

J. DL (15.12.91)

iL+L = •.• iw 1 ' (15.l2.9I,
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We continue until

tr (tk)

t ~ r (C)1.2.5
to nuiffioeently small.

Ifere alao the solution is Independent ot scale as shown in Seotion

15.12.7.

15.12.7 Proof of the Generalized Procedure Independent of Scale

OLven the n x,n covariance natrix C and the n x k factor matrix a.

Consider

E . C L a' (t5.12.96)

Lot

D . g Dc + t Da (15.12.)

where • and t are scalars. Consider the basic structure rank reduction

solution

a 0 C a" a (a# D" C D1 a) 4)' h (15.12.98)

where h Is a square orthonormal. Let A be diagonal and

A C A (15.12.99)

A - ,a (1a.12.100)

- D + f ,DA (15.12.101)



an4 aonsider the baNIa struature rank refat tion solution

A- 7 A (A' eye A)4 it (z1.1.2o•2)

from Sqa, (15012.96), (1# .2.99), and (15.M2.100) In (15-12.101)

which Is the sane m a .s (15.1..98).

Now we let

a a 501 A (15012.105)

Frm Eqao, (15.12.100) and (15.12.10.) in (15.12.105)

a D4 a (15.12.1o6)

which shows that a is Independent of A aMd depends only on a and f in Eq.

(15.12.97). If we let n :O f w 1, we est the communality scaling type

solutions. If we lot 1 - f, f - 0, we got the convontional basic structure

solution applied to the correlation natrix°

We miay nov substitute C - D for Cj and j - b for z and show that a is

independent of 6 and depends only on anA f. Then for = 1 and f 1 we

get the specificity scaling type of soltions.
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* MA ANALYSZS

Zn earlier chapters we have referred to the communality problem and have

LndiCeted that from a computational point of view we may be concerned with

solvina for unknown diagonal elements of the correlation or covariance matrix

in such a way that the modified matrix ts oa lover rank than the original.

Preusuably the ow.gin. matrix will be basic in most cases.

Whether we ana select diagonal elements so that the matrix without alter-

ations in the ottWiagonal elements is or lover rank than the original is a

question or fact* We know that in some cases this cannot be done except for

a rank reduction of I& It In well known that experimental covariance matrii-

cee can in general be reduced to a rank one less than their order by a charge

in one diagonal element.

There are# of course, as many diuaonal elements as the order of the

matrix, so that there would be n ways that the matrix could be reduced in

rank by at least 13 Actually, in the case of the correlation matrix# we

know that this diaeonal element which for any particular variable will re-

duce the rank of the matrix by 1, is the squared multiple correlation of ttat

variable with all of the others.

The problem of communality and how to solve for the unknown elements

has been very troublesome over the years. Many investigators are beacming

convinced that the questions have not been properly stated and that the prob-

lem has not been properly formulated.

lie have seen in the previous chapter that another vwy of looking at the

problem is from the scaling point of view. It should be remembered that the

cirmunality problem has its origin and basic motivation frcan a consideration

rI



of hypotheses about the kinds of fautorm which may exist in a met of variables*

These are factors which are common to two or more of the variable•, and factors

whiach ae specific to each of the variables, This does not, howver, sulgget

specifically a mathematical formulation, because the unique variance must con-

sint of both syutematic specific variance, and error or unaystemato specific

variance*

Another approach to the solution of the issues involved In the comun.

ality controversy has in recent years received considerable emphauis under

the impetus of Louis Outt~an (1953). His work has offered suce hope of

Cetting out of some of the dilemmas and contradictions involved in the tradi-

tional formulations of the communality problem. This approach is based on

what he terms image analysis. The notion here is that a factor analysis should

be concerned primarily with that part of each variable which can be estimated

from all of the other variables in the set, and that as much as possible of

the specific variance should be eliminated.

We shall therefore consider In this chapter a group of methods based

on Outtman's image analysis which are somewhat different from those considered

in the previous chapter. The methods of Chapter 15 operate upon a transformed

score matrix in which the transformation consists of multiplication by a scal-

ina diagonal. In the examples here, we also work with the transformed score

matrix, in that the matrix is multiplied on the right by another matrix. The

matrix in this caseo howeverp is not a diagonal matrix but a more general type

of matrix which we shall develop in detail in the following sections,

16.1 Characteristics of the Mlethods

We shall consider now the characteristics which are cmmon to all of

S I~i



these methods, First, all of the methods are bWed on the Image matrix, which

is the matrix oonsitUn• of the part of each variable which can be predicted

by all the remaining ones. BDoond, the calculation of the Inverse oa the oor-

relation matrix is required in all ot the solutions, The problem of scaling

of the variables it a consideration, but the methods differ aoeentLally in

the arbitrary scaling procedures adopted, Third, the correlation matrix should

be basic, Finally, the solutions ar•, in general$ basic structure solutions.

16,1,1 The Cocmunality BSore Matrix. The basis for all of these methods

ts a matrix derived from the data matrix by conventional lasit square proced-

uroa. In effecto one got# the best least squara estimate of each attribute

vector in the data matrix frcm all of the remaining n-1 vectors, In this way

one gets a rtatrix of least oquare estimates of the data matrix vectors. Actu-

allyj, one does not go through the tedious and detailed operations of calculat-

ing the regression equations and the estimated vectors. By algebraic short-

cuts one arrives at a matrix which transforms the original data matrix into

this so-called image or estimated data matrix. Also, in practice, one does

not operate directly on the data matrix, but rather on a correlation or co-

variance matrix derived from it.

16.1.2 Calculation of the Inverse. The methods considered in this

chapter differ essentially from all of those we have considered previously

in that the calculation of the inverse of the correlation matrix is required

as a basis for the solution. For this reason the computations can be con-

siderably more involved than previous methods we have considered. The compu-

tation of the inverse of a very large matrix involving several hundred or

more variables is in itself an appreciable canputational enterprise. It is



therefore only since the advent of the htih speed electronic computers that

methods at factor analysts based upon the Image anayntis approach of OGuttman

have beoome feasible.

16*,1. Gaalin& Considerations. The essential differences In the

methods we shall conoider are those involving soaling of the variables after

the original data matrix has been converted to an image or estimated matrix.

These soaling methods are, howevero oonsiderably simpler than those in the

previous chapter whore, as we recall, elaborate Iteration procedures were re-

quired to arrive at a scaling matrix for each of the iodole presented. In

this lat of methods, one adopts a simple and perhaps arbitrary rationale for

the scaling of the variables, and, proceeding tram this scaling on the co-

variance matrix of the estimated variables, one does not attempt to alter it

by succeasive approximations as in the previous chapter. It Is possible with

these models to solve tor scallng constants as in Chapter 15, However, the

fruitfulness of such approaches has not yet been demonstrated.

16,1.4 The Basic Correlation Matrix. In the methods discussed in this

chapter we must have a buaic correlation matrix. This, of course, follows

from the fact that we work with the inverse of the correlation or covariance

matrix au part of the general procedure. In the past It has been true that

most of the correlation matrices on which factor analyses were performed were

basic and did have a regular inverse. Therefore this restriction in the

method has not been a practical or serious one. Houwever, we may very well

encounter correlation matrices which are not basic. The most obvious case

is the one in which we have more attributes than entities or persons. An ex-

ample Is the personality inventory for which we wish to consider each Item on

I l l S' I 1 I 1 l l I I I l I . I
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the Inventory as a variable, We may have many hundreds of items in the in-

ventory, and it may be adminioterod to only a hundred porsons, Actually, In

the experimental aituationD one is faced with the problmm that the longer the

inventory to be administered for research purpoMs, the more difficult it Is

to amass cases or entities which have responded to the Inventory. Therefore,

in practical situations there is a tendency to find an Inverse relationship

between the number of variables and the number of entities. This is a con-

sequence of the limited time which potential subjects have available %'r tak-

Ing the inventory.

Zn any case the corrolttion or covariance matrix cannot have rank

greater than the number of entities. The problem of how the concept of the

general inverse of the matrix could be used in connection with the inage analy-

$is type of factor analytic models has not yet been explored. Whether or not

this would be a fruitful approach, even If it were mathematieally and com-

putationally feasible, requires further inveatigation.

16*1.•5 Dasic 3truture Solutions. It is quite possible to apply any

of the factor analytic procadures we have discussed in previous chapters to

the types of transformed covariance or correlation matrices which we work

with in the imaGe analysis models. Even the centroid, the group centroid,

and the multiple group methods can be applied. However# after going to all

the trouble of calculating the inverse of the matrix, and considering the ad-

vantages of the basic structure solution, one would in general adopt acne

basic str'ucture type of solution, particularly when high speed cenputers

are available. The methods based on the iinage analysis approach would not be

feasible for sizable sets of datit matrices if only dook conputers were avail-

able. As a ;natter mf fact, it is only for small demonstrations or fictitious



exwpl*i that one would be likely to use desk ucomputers for the types of

models outlined below,

16.2 Kinds of Methods

As indicated above, all of the methods start with a bovartanae matrix

vhich consists of the variances and covariances of the least square estimated

vartableso We assume that the data matrix has been reduced to standard or

normalLzed form. This has been done before the symbolic transformation to

the estimated or Image variables has been aooauplimhed.

On the basis of this assumption, we then have tour different variations

of the factoring procedure. First, the estimated covariance matrix may be

factored. Second, the correlation matrix of the estimated variables may be

tfctored. Third, the covariance matrix of estimated variables may be scaled

In such a way that it is independent of the scaling of the original variables.

Finally, the inverse of the covariance matrix may be scaled no that it yields

the best least square approximation to the identity matrix.

16,2.1 The Estimated Covariance Matrix. As indicated above, the matrix

of variances and covariances of the variables estimated by least square re-

Vregsion from the data matrix of nonralized variables can be obtained by suit-

able mathematical transformation of the correlation matrix, After this trans-

formation has been applied to the correlation matrix. the resulting covariance

matr:x Is subjected to a basic structure type solution such as an eigenvalue-

eigenvector solution in which the largest roots and corresponding vectors are

extracted without further alteration of this covariance matrix.

16.2.2 The Estimated Correlation Matrix. Instead of working with the

covariance matrix of estimated variables, one may wish to work with the actual
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correlation matrix of these estimated variables, This is a simple matter, for

one can merely pro. and postmiltiply the estimated coviuianae matrix by the

rectprocal square root of its diagonal, or what amounts to the aame thing,

by the reciprocal square root of the variances of the estieated variables,

This correlation matrix with unity in the diagonal. Is now factored in the con-

ventional manner by basic structure or eigenvalue procedures,

16.2,3 The Independent Scale Procedure. It will be recognized that

both of the variations considered above are arbitrary from the scaling point

of" view* One may, however, prefer a model which does not depend on the as-

sumption of either a standardized data or an image matrix, but a method which

is independent of the scaling of the original or image variables, In other

words# one iay wish to use a procedure so that, for any scaling diagonal one

may use on the data matrix, this diagonal cancels out in the covariance matrix

which is finally adopted for factoring. The third method achieves this objec.

tire,

16.2.* The Optimal Residual Matrix. In the image analysis approach,

each vector of the image matrix is defined as the part of each variable which

can be predicted frcm all of the others. Implicit also is the concept of the

anti-image matrix which consists of that part of each variable which cannot

be predicted from any of the others. We may therefore also define an anti-

image covariance matrix as indicated in Section 16.7. This method proceeds

on the assumption that the image covariance matrix should be scaled in such

a way that when the anti-image covariance matrix is scaled in the same way,

it will be as close to an idantity matrix as possible. In other words, the

rationale is that the anti-imhae covariance matrix shall have a scaling such
that, canpared to the variances, the covariances will be as small as possible
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in the least square sense,

l6,• The Image Covarianae Matrix

16*.31 Characteristics of the Method. In this method, as Indicated

above$ the analysis is performed directly on the covarLance matrix of the

variables which have been estimated from the normalized data matrix by the

least square model., It can be seen from the mathematical proof of this method

in 0 otion 16.7 that the diagonal or variances of this covariance matrix con-

*itt of the squared multiple correlations of each variable with all of the

others.

In general, any method of factor analysis based on basic structure pro-

aedures or approximations to them tend to give the greateet weight, to the

variables with the laraest variances. That is, If a covariance rather than

a correlation matrix is operated upon, other things being equal, the variables

with the largest variances have the greatest weight or influence in determin-

Ing the factor loadings for that matrix. It can be seen, therefore, that

since the variances are squared multiple correlation coefficientso those vari-

ables which have the highest multiple correlation with all of the other vari-

ables receive the greatest weiGht in the determination of the basic structure

factor matrix. Conversely, variables with very low multiple correlations re-

ceive very little weight in the solution. In particular,, if a variable is en-

tiroly independent of the others--that is., if it has zero correlations--it re-

ceives no weight whatever, and vdll therefore not have a loading in any of the

factors,

The rationale here can obviously be defended if mne takes the position

that he is interested only in the factor loadings for those factors which are

comnnon to tU or more of the variables, This is the traditional Thurstonitn



approaoh to the problem. The acU~unality concept appears to make more ioiae
1rO14 the mathtimatioal und theoretioal point of view VIa the image aralysta
approach than via the more traditional approach in which one Alters the dI

'tional e4omants without altering the correlation ooeftioientst Zt would eeom

that any defenaible approach should be baued on uvan transformation of the data
matrixp rather than on the data matrix plus something which is not connected
in any way with the data matrix. This latter Is Implicit In the conventional

couimnlity approach.

16--1., Computational Zquations

16 93.2a Definition of Notation

I is the correlation matrix.

His the inverse of R.

D ia the diagonal. of p

q W; is the estimate4 covariance matrix.

a is the factor loading matrix.

16.3,2b The Equations

D Da ' - (16.3.2)

c D (p6. .'&)
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CH R.Da ÷

N1w CR t (16.3.6)

a w Q"

16.4,3 Computational instructions, we assue that the matrix of cor-

relations of the variables to be factored is available. This matrix we in-

dicette by .. The first step is to calculate its inverse by one of the con-

ventional procedures. Eq. (l.,.l) indicates the inverse of the correlation

matrx. Wc designate this by p.

Eq. (16.J.2) is the diagonal matrix whose elements are the reciprocals

of the diagonal elements in the matrix given by Eq. (16.3.1).

We next indicate the inverse of the correlation matrix vith the diagonal

elements removed or made O, as in Eq. (16.-.3).

-The next stop is the pro- and postmultiplication of the matrix given by

Eq. (16.3.)j, by the diaGonal mutrix of Eq. (16.3.2). This is indicated by

Eq. (161.3.4).

The next stop consists of subtracting from the original correlation

matrix the diagonal matrix of Eq. (16.3.2). This is indicated in Eq. (16.3-5).

It can be shown that the diagonal elements in the matrix on the lert hand Bide

or Zi. (16.3.5) are now the squared multiple correlation coefficients of each

variable with the remaining variables.

We next add together the matrices given by Eqs. (16-3.-4) and (16.3.5),

as indicated in Eq. (l6.*.c). This is now the covariance matrix of the eati-

mnated variableoo or the image covariance natrix.
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Eq. (16•.7,) indiaates the basi, structure solution of this image 0o-

variance matrix.

The ana•lis may be carried to as many factors 45 desLrod. There seems

to be no very good rule for thin particular model., but a rough rule-of.thurib

criterion is that the sum of the currently calculated basic diagonals be ap-

proximately 80 to 85 percent of the trace of the Image coverianoe matrix

given by Eq. (16.3.6).

Eq. (16,.*8) gives the factor loading matrix as a function of the basic

diagonal and the basic orthonoroal vectors indicated in Eq. (16.3.7).

i6e,.i Numerical Examples The oorrelation matrix used hare is the

amo tie in provious chapters,

Table 16.9.l gives the image covariance matrix of the correlation matrix.

The inverse of the correlation matrix is not displayed, although it can be

printed out frco the appropriate Fortran program if desired, The procedure

for calculating the inverse is given in Chapter 3, SOction 3.5, This in in-

cluded as "Subroutieae Symin" in the Fortran listing.

The first row of Table 16J..2 gives all the basic diagonal elements of

the image covariance matrix. The body of the table jives the column vectors

of the left basic orthonormal. These are, of course, proportional to the cor-

respondinig factor loading vectors of the image covariance matrix. The basic

orthonormal matrix .must be postmultiplied by the square root of the basic di-

agonal matrix to yield the principal axis vectors. These have not been calcu-

latod. The basic structure factors are probably of more interest than the

principal axis vectors, although the latter could readily be obtained by

several additional statements in the Fortran program.

/
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Table 16,3#.1 Zmae Covartane ifatrix

0.,7331 o.688o 0.6621 0.1204 0,0652 0.1011 0,O236 0,3018 0,3356
006CW~ 0-7444 o:,6659 0.147'2 0.067)2 091147 of16 0-3067 0.3577
O,662. 0.6659 0o6'g 0.2146 0o160 0,23 O, 0 M7 0.3047 0.355
0.1204 0.1472 0o214 0.5114 0.4875 0.4942 0.2182 1 0.28530.0652 0.0672 0.169, 0.8750.72 0.858 0.1611 00 0,2464
0.1011 0.1167 0.2389 0.4942 0.588 0 5624 0.1602 0.1417 0.2623
0.206 0.3163 0.2877 0.2182 0.1612. 0.1602 O.AW80 0,9 0.177
0.3018 0.3067 0.30147 0.1783 0.14 0.2o.1417 0.3964. 0.14989 0,3885,
0,336 0.3577 04554 0.2853 0.2464 0.25 0.4177 0,3885 0,4359

Table 16.•.2 - asic Diaonal and Mail Orthonormil of image Covariance Matrix

3.0137 1.3337 0.5792 0.1251 0.0651 0.0508 0.0371 0.0214 o.oo02

-0.4.108 0.345~8 -0.24.89 0.0005 .0.1.535 0.0380 0.0019 0.21427 -0.120,1.
-0.4221 0.3318 -0.2246 o.1•.25 o.4832 o.4.26 -0.3195 0.1327 -0o3261
-.o.031 02016 . 0•.3089 -0.2148 -0.o538 0.3573 0.287. ... 966 o.41.49
o..o'57 -0o.4596 -o.078o -0o.o329 o.1784 ..0.5532 0-3880 -0.1702 0.4442
-0.•2172 -0.5232 -0.1902 0.4109 -05056 -.00719 -0.38o0 -0.0709 -.0.2522
-0.-2472 -0.4862 -0.1926 -0.4374 0.316 0.4.173 0.1172 0.19.. -0.3752
-0.3027 -0.0133 0.5306 0.4669 0.2479 0,2779 0,2532 -0.4101 -0..19.0
-0.292. 0.0168 0.5653 -0.5696 .0.3283 ..0.2c47 .o.1488 -0.095i -0.2063
-0.3391 -0.0765 0.,3343 0.1533 0.0352 0.1999 -0.2234 o.654. 0.,739



16,. The Image Correlation Hatrix

16.,,41 Characteristios of the Methods The method to similar to most

of the conventional methods of factor analysis we have considered in previous

chapters in that we begin with the matrix of the correlations of measures

with unity In the diagonal, Ner. we make an arbitrary assumption that, for

the particular sample; each of the estimated variables should have eqtal

variance. The rationale or Justification for this assumption is probably

no worse or better than such an assumption for the origirnal data matrix. If,

however, one assumes that variables which correlate low with others should

notl# therefore, be weighted less in the factor solution. the procedure of

using unit variances for the Image variables Is Justified. In any cause,

this method does give relatively more weight to the variables which have the

greater unique variance than does the previous method.

16•.•2 Computational Equations

169.,2a Definition of Notation

Cd 14 is the estimated covariance matrix.

Dt. i the diagonal or R1.

ois the estimated correlation matrix.

QSŽ. is the basic structure of ýj W.

l.Ii.2b The Equations

Oiven the C1 matrix

d (I

I r | | | | | | | | m• II | 'u~nu~D lnl n I Ii l II I
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W 14; (16.14.22)

I q .(1.4.4)

16•4*3. Computational Znstructions. The ccoputatLonai. instructions for

this procedure Involve only a fow more steps than those of the previous method.

lie bealn In the came way by calculating the covariance matrix of the image

variables, that Let the "W 1 matrix, We have seen that the diagonal olemnts

oa this covariance matrix are given by the identity less a diagonal matrix

which is the inverse of the diagonal elaments of the inverse of the correla-

tion matrix. This is indicated in Eq* (16.4.1). It is precisely a diagonal

matrix of the squared multiple correlation coefficients of each variable with

all the remaining variables*

The next sot of computational steps in given in &is (1604.2)o This con-

sists of pre- and postmultiplying the covarianco image matrix by the inverse

of the d matrix calculated in Eq. (16*4,1). The resulting matrix is the cor-

relation matrix of the imago variables.

The next sot of computations consists in finding the basic structure

factor vectors for the required number of factors, as indicated in Eq.

(16.,4.3).

The factor loading matrix is indicated in the conventional manner in Eq.

(16.14.14).

16o.4,14 tumerical Examples. le use the same correlation matrix as in the

previous section. Here we begin with the image covariance matrix solved for

in the previous section.



Table 16,44 gives the correlation matrix obtained from the image on.

variance matrix, This ts obtained by pro. and postmultiplying the Image co-

variance matrix by the reciprocal square root of its diagonal.

The first raw of Table 16.4#2 gives the elements of the basic diagonal

of the image aorrelatimn mnatrix. The body of the table gives the left basic

orthonormal mf this matrix. Zt may be transformed tm a factor loading matrix

by the usual method Indicated in Eq. (16.4.4)0

16.5 The Independent Joale Matrix

16.5.a Characteristics of the Method. The previous two methods which

we considered were based on arbitrary scaling procedures. Zn the first case

we required that the original variables be in standard score form, and in the

second case we required that the Image variables be in standard score form.

It may be desiroble to have a method which does not impose any such arbit-

rary scaling.

We therefore consider a method which scales the Image covariance matrix

in such a way as to cancel out any particular scaling which has been applied

to the original or image variables.

This method also has seine interesting characteristics which are indicated

in Section 16.7.3. The particular scaling applied to the data matrix is such

that the image covariance matrix is the sum of the covariance matrix of the

scaled data matrix and the inverse of this envartance matrix, less twice

the Identity matrix.

16.5.2 Computational Equations

16.5•2a Definition of Notation
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Table 16,.1 . Image Correlation M4atrix

1.oooo 0.931 o.•3o6 o.16 o.loo8 0.1574 o.4I9W 0.4990 0.59361.9000 0.9ooo o.930 o.107 .o)o.• osr o.5033 o.6279
0.9306 0.9239 1.0000 0.3612 o.2695 o.)834 0.,2 0.5192 0.6.79
0.1966 0.230T 0.3612 1.0000 0@9015 0.921 0. 0 0.3532 o.:601,
0.1008 0.1029 0.269, 0,0.l 1 om 0 .8566 0.3W2 0.15240. 9 o.934
0.1574' 0.1803 0.3834 0.914 o.8066 1.000O0 03M83 0.26714 0.5301
0, 49146 0.5287 0.4.992 0.,.4400 0.3072 0.308 1.0000 0.8093 0.9125
0.19o0 0.50• 0.5192 0.35P2 0.15214 0.714 o.0093 1.0000 0.0330
0.5936 0.6279 0.6479 0.6042 0.4934 0,5301 0.9125 0.8330 1,0000

Table 16..42 - Basli Diagonr3 and Basic Orthonormal Matrix of ZLus Correla-
tion M!atrix

5.1559 2.2350 1.0679 0.2392 0.1099 0.0883 0.0589 0.0397 0.0052

-0.3300 -0.355'5 -0.3292 -0.0630 -0.3118 o.o126 -o.6o88 -o..02. -o,0.145
-.0392 -0.3428 -0.93068 0.1185 0.2553 o.641o o.50o2 -0.02900 .0,3807
-o.3668 -o.2347 -O.3o92 0.1657 0.0189 0:3361 0.650 o.5459 o.4728
-0.3094. 0.A512 -0.0757 0.0589 0.0797 -0 C697 -0.21413 -0.0117 o.2.1+23
-0.2523 o.5o38 -o.1594 -o.3643 -o.619 o.1279 o.21,14 0.1799 -0.2512
-0,.2614 o.o48 -0.1780 o.3935 0.4708 0.3568 -0.1045 -0.1302 -0o3760
-0.35Z -. o0798 0o1927 -0.4978 0.3183 o.o554 -o."57 o.3636 o.1.699
-0.3312 -0.1.5 0.5081 0.6231. -0.3792 -0.1391 0.0655 0.1355 -0.1911.
.0o.1o0 -o.036 0.29o. 9 -0.1644 o.o119 o.:26o o.3666 -o.583o o.o.030



OW W oi the estimated oovarianae matrix,

o is the estimated aovarianoe matrix independent of cscle*

is the basic structure of 0.

16.5.2b The Equations

Given the OW W matrix

d. Dh (16.5.1)

o . cwwd (16,5.W)

o • . QSQ (16.5.,)

a . ½(16.5. J)

16.5.3 Computatinnal Instructions. This method, like the previnus one,

begins with the covariance matrix of the image variables. It may or may not

be based on an image covariance matrix derived from standard measures. The

result is the same whether it is applied to a matrix derived free standard

mneasures or to a matrix derived frem arbitrarily scaled measures. For cen-

ventence we shall assume that the image aivariance matrix is based on stand-

ardized measures.

We begin with a diagonal matrix, as indicated in Eq. (16.5.1). This is

a diagonal matrix made up of the square roots of the diagonal elements in the

inverse of the correlation matrix.

We now pre- and postmultiply the covariance matrix of the image vari-

ables by this diagonal matrix, as indicated in Eq. (16.5.2). This we call



the 0_ matrix. This matrix now has the lnteresttng property that it IN the

sum of a matrix and Its inverse lose twioe the identity matrix.

Eq. (16.#5,) indicates the basic structure resolution of the matrix.

Eq, (165,#4) gives the principal axis factor loading vectors fr the

specified nimber of factors,

165#.4 Numerioal Example. We use the correlation matrix as in the pro-

vious sections and begin with the image cavariance matrix as calculated in

those examples,

The first row in Table 16.5.1 gives the basic diagonal elements of the

Goals-free image covarlanoe matrix. The body of the table gives the left

basic orthonormal of this matrix. Perhaps the moot striking feature of this

tables as compared with correoponding tables for the two preceding methods,

Is the large first eigenvalue of 8.9569.

16.6 The Optimal Residual or Anti-Image Matrix

16.6.1 Charaeteristioa of the Method. This method is somewhat differ-

ent In rationale from the previous methcds. It beginss as they do, with a

covariance matrix of the image variables) but the rationale for the scaling

procedure is less arbitrary than in the first two, although perhaps in a

sense more arbitrary than for the third method.

Here the essential consideration is one developed independently by

Guttman (1956) and Harris (1962). They were concerned with a scaling ration-

ale for which the scaled anti-image covariance matrix yields the beat least

square approximation to an identity matrix. The method is of particular

interest because of the recent work of Harris (1962) in which he has been

concerned with the estimation of diagonal elements in the correlation matrix

which will yield the best approximation to a lower rank approximation. This

is the conventimnal c-mnunality problem.
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Table 16#5#1 - Basc Diagonal and Basi Orthononral of Scale-FreI

Image Matrix

0.9569 3.2956 1.283 0.278& 0.2096 0.1196 o.iooi oo466 ox.o6 I
-o.51441. o0.675 "0.1628 -0.07514 0.6286 0.180 -0.1=06 0.1335 -0.0905

05530.2518 .0.1301 .0.2229 -o0.6623 0.2269 0.1128 0.1484 -o.2414
"o.U0 0.0791 "0.2376 0.3257 0.0569 -0,4390 0.3673 -0.3991 0.3322
-0.1609 -0.4786 .0.0668 -0.0277 0,.1704 0.9'536 -0.3349 -0.3726 0.14650
.01U29 -0,5571 0.M088 -0.4379 0.3024 o0o869 0.5231 0,0373 -0.2501

.0.1608 .5268 -o0.9149 o.4610 -0.1566 -o.3049 o.,3482 0.2665 -.03692
-0.2160 -O.1O96 0.5587 -o.4044 o.0.0i -o0.4185 ,-o,2T22 -0.0,06, -o.2233
-0.2166 o.0o59 0.6101 0.5023 0.i264 O.W03 o.• 008-0.0o429 -0.2225
-0.,1348 -0.1624 0.3601 -0.1329 .0.0104 -0.190g4 0.0567 0.65o03 0.5556



16,6,2 Computatinal Xquationg

16,6,2% Defnitinon of flotation

OW W it the estimated oovarianoe matrix*

(8)i a matrix whose elements are the squares of the elements

In Ps

7_ is the oovarianco matrix with optimal residual variane. oenpon.

ento*

16.6.2b The Equations

(16.6.1)

d" 1 ) (16.6.;) ,

D d . (16.6.4)

7 D CD4 wD (16.6.5)

7 Q 8 0' (16.6.6)

a. (16.6.7)

16.6,3 Crmputational Instructimns. The cemputations begin with the

image covariai•ce matrix calculated as in the previous methods. However, we
must go back now to a solution of the scaling diagonal. We begin with the
inverse of the correlation inatrix, as indicated in Eq. (16.6.1).



Next we square each of the elements of the inverse aloulateod In Eq,

(16,i,1), as Indicated in tq| (16,,), The superscript 2 enclosed In paren.

theose moans that each element of the matrix on the right hand siod nf the

equtton hus been squared.

Next we calculate a vector# as indicated in Eq, (16.6.3). The right

hand side of this equation showe that the vector consists of the diagonal

eleoents of the inverse of the correlation matrix given by Xq. (16.6.1). We

then promultiply this vector by the Inverse of the matrix calculated in Rq,

(16 96.)

We now define a new diagonal matrix, as in Eq. (16.6.4). This matrix

Is obtained by taking the diagonal elements of the inverse of the correlation

matrix and multiplying these by the square roots of the elements calculated

in Eq. (16.6.3). It should be observed that the solution given by Eq, (16.6,3)

does not indicate offhand that all elements in the d matrix must be positive.

If they are not positive, of course, we cannot have real numbers for their

square roots. This is a limitation of the method. R1usearch to date seems

to indicate that with most experinental data matrices, Eq. (16.6,3) will give

all positive elements.

We next pre- and postmultiply the image covariance matrix by the diagon-

al matrix of Eq. (16.6.4) to get a 7 matrix, as in Eq. (16.6.5). This is the

matrix which we nov factor.

The basic structure of this matrix is indicated in Eq. (16.6.6).

The factor loading matrix is given in Eq. (16.6.7). This is simply the

usual principal axis factor4 ."Iculated for the desired number of factors.

16.6.4 Nu•unerical Example* We use the correlation matrix as in the pre-

vious section.
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Table 16,6.1 gives the inverse of the correlation matrix.

The body of Table 16,6#2 is the inverse of the matrix obtained by squar.

ing the elmitents of Table 16.6.6. The row at the bottom of the table contains

the elements of the scaling diagonal.
p

The body of Table 16.6.# gives the image covariance matrix scaled so that

the corresponding anti-Lmag•e matrix is the best least square approximation to

the identity matrix.

The first row of Table 16.6.1 consists of the elements of the basic di-

agonal of the matrix in Table 16.6.3. The body of the table is the corres-

ponding left basic orthonomal.

16.7 Mathematical Proofs

16.7.1 The Estimated Covariance Matrix

Given the data matrix x in standard measures. We consider another matrix,

W,, such that each vector W of W is the least square estimate of x calcu-

lated from the remaining n-i vectors of x. Wc let

a x1 x (16.7.1)

We let be the matrix of regression coefficients for estimating each variable

from the remaining n-1 variables so that

It iS well known that • is given by

i- i Dkl (16h.73)

if the variables are standard measures andI Do- is the diagonal of if.we
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Table 16.6.1 , Znvorse of Correo1ation M&trix or

3-74163 -2.C659 -1.2821 0.0950 0O.-322 o.o594+ o0.10,1 o~5,. .0.1026
-2-0659) 3.931.6 -1.j784 0-25021 0.563j .o~oY144. .o-0o 0506 - 45 o. .07!

* 1.2821 -107374 3,2315 o.y.34 6.20.92 1)1,6606 o.0.519 0.21y6 .0.1694+
000950 0.2582 -0.379, 2•.0465 •..7099 .0,6166 .oxi. .-. 0187 .o0303o
0.2822 o.o56, -0o2692 ,.07099 2.3365 .1,.916 oiolo -ool047 .00.016
0.0 591+ .0.07144 0.0068 -o.616$6 .1.19.16 2.21853 .00.1310 0,17C4+ .0.1155
.o.031. -0.o5o6 -0.0519 -0.1215 0.1io4 .O.13iO 1.g.26 -0,9,)02 -0,37`1,
-0.054+2.-0311+5 0.21.76 -0.0187 -0.01447 0.1764+ .0.9902 .q 9 .0.5397
.0~o.106 .0.0787 -0.1694 o.0.303 -.0.316 .0.1155 -093'131 -0.5397 1.7726

Table I6n6r2 - Inverse of P Mlatrix, nnd Scaling DMagonao1a for Optimal
Error or An•i-Imnap MatrLx

0.0'(W -0.020') .0.0036 0.0006 -0.0011 0.0002 -0.000' 0.0006 .0.,0002
-0.0-2109 0.0724 -oo99 .0.0008 00005 0.001 o 0oo.,0o04 .0o.0018 o.000,
.oooe6 -0.0099 o0o99o .0o.oo3 -0o.001 0.005 0.0002 .0,0009 -0.o007
o.0006 -0.CO08 -0.0031 0.0,25 -0.01.91 -0.O121 -0.0008 0.000) -0.0071
.0.0011 0.0005 -.00010 ,0.0191 0.1.987 -0o0526 -0.0004. o.ooo4 0.oo07
0.0002 .,.oo0o. o.00o5 -0o.014 -0o.o526 0 o.206 -o.ooo3 ..o0015 .0o0003

-0.oO02 0.0004 0.0002 -0.0008 .. 0oo0•; .0.0oo0 o.0.'4 -0.0706 -0.0062
o.ooo6 .o.oo1 .0.0oo9 o.oo00) o.oo o -0.o0o -150.070 0.027 -0.0219

-0,0002 0.0002 -0.0007 -0.0071 0.0007 -0.0003 -0.0062 -0.0219 0.3, 8

1.6103 1.6127 1.-5790 1.2936 1.2007 1.2964 1.2215 1.1905 1.2497



1.41.

Table 16,6.3 . Image Covarlance Itatrix Scaled for Optimal Anti-lnage
M•trtx

0. 3 OO 7 1.6834 0,2500 0o1346 0,2110 0,5776 005785 0.6752
1.78697 1.6957 0.4072 0:.487 0.2439 0o6230 0,889 0,72108
1.6834 1.6957 1.7216 0,4384 0,3424 0.4091 0,5 8 0.5728 0,7013
0.25•0 0.3072 0.1104 0.8558 0o.0T77 0.827 0.311M7 o.:2748 o.46i1
0.1)46 0o.I07 o.0424 0.8077 o0.932 o,.o06 , 0 1.241 0943
0.2110 0. 239 o.409i o0,8c7 o.86o6 o.94.52 0.2538 0.21• 0 0.4252
0.5776 0.6230 0,.5518 0.3447 0.:520 0.2538 0:7174 0.5764 0.6),16
0.5785 0.5849 0.5728 o.a148 0o 1241 0.2106 0.5764 0.7071 0.5779
0.6752 0.7208 0o701) 0.o611 0.3943 0.,4252 0.6376 0.5779 0.6807

Table 16.6.14 w dah o Diagonal and Orthonormal for LOcalod I•mae Covarlance

6.4745 2.4373 0.9357 0.2035 0.1438 0.0915 0.0730 0.0380 0.0052

-o.14973 -0.2864 o.653 0.1001 o.60o53 -0.2,,47 0.11102 0.1503 -0.0974
0-05075 -0.2653 0.a3o33 0.2162 .0.6671 .0.2001 -0.16l6 0.1532 -0.2651

.0o.493T -0.1097 0.2564 -o.3168 0.0677 o,455o .o.2•4-4 0.,4056 0.3395
-.1o84 o.4946 0.08,, 0.0303 -0.1885 .0.5371 0.2673 -0.3289 0.4594
-o.148 o.5336 0-2008 0,11374 0o.1220 -o.0198 .0.53143 0 .0,2659
.0.1720 0.5154 0.203T .0.4 09 _o, 11466 0 2876 0 S: .'& S7
-0.2281. 0.10o37 -0.5631 0~T.39 0.0515 0.35564 .. ,, ýUf 2'1

-0.2181 0.0494 -0.5767 -0.5284 0,1431 -0.3830 -0.3355 -0.0583 -0.-026
-0.2643 0.1655 -0.3822 0.1272 -0.o054 0.2073 -0,0633 o,6497 0.5210
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therefore have

The matrix of residuals, E is then, from Eq. (06.7.4)

a x x W (16.7.5)

Prom Eq.. (16.7.4) and (16.7.5) we have

I m x fl 4 (16.7.6).

We shall, now consider the covariance matrices involving ?p W., and E. We lot

XI W

CW W WIPW(16.7.9)

cr. E (16.7.81)

Nl

Thesarefz thae fomlsdvlpdb uta (93 n iCj yHri

.- (16.7.)

Fro ma4i os (16.7-1), ( 16710 ahnd r q (16.7.7 )

x . N' (16.7'12)

x'* (16.7.81)

From Eqs. (16.7.1), (16.7.5), and (16.7.8)

.(16.7.13)



Tro Eqs,. (46.7.), (16.7.4), and (16.7.9)

SW 'W (z - n., a) n (z1 e' Dj.J) (4.6.714)

or

CWW It - 2 OL+ DjI1 le D~l (16.7-15)

From Eqn. (16.7.1), (16%.7.), (16.7.6), ald (46.7.10)

(16.7.16)

From Eqs. (16.7.1), (16.7.6), and (16,.711)

Cr. z (16.7.17)

The relationships among the various covarlance matrices are obvious and have

beon discussed by Guttsan (1953) and Harris (1962).

One may now regrd the covariance matrix of the "estimated" variables

as the logical matrix to faotor, since presumably it has removed rrom each

variable that part hlich does not overlap with the other variables. We there-

fore let the basic structure of Eq. (16.7.15) be

C = -. C' (16.7.18)

and factor to the desired number of roots and vectors.

16.7.2 The Estimated Correlation Matrix

Suppose we do not wish to factor the covariance matrix of the estimated

variables, but rather the actual correlation matrix of this estimated matrix&

We have from Section 164.T1



We loat

The matrix we•wih to factor Ia

1wW W d 4 'CWit (16.7. i)

FL'o, Eqs, (16.7.19) and (16.7.20)

d I -D'-i (167.722)

It 13 well known that Eq. (16.7.22) Is a diagonal of the squared multiple cor-

relations between each variable dnd the remaining n-1 variables of the net.

We repeat the covariance matrix of the estimated varibleas with the observed

variables,

C V- (16.7.23)

It is clear from Eqs. (16.7.22) and (16.7.23) that the diagonals of C1 WW

and C X are the name.

16.7.3 The 3olution Independent of Scale

Consider again the covariance matrix o0 the estimated variables x.

mnbnely,

RW R 'i +Dj 1D (16-7.24)

It may be desirable to consider a factoring of, 3ay,



*0 D 0 W D (16.7.25)

where 0 is indopendont of tho scalin% of tho variables. That ios we remove

tho noumption ol' utandardized measure in x. Suppose we lot

xf (16.7.26)

whore now we plaoe no reatrictions on the scaling of . We then rewrite Eq.

Cw W C -2 DI+ De C Dcý(I..7

We lot

C m d R d (16.7.28)

where d is an arbitrary scaling diagonal.

Suppoce we lot D in Eq. (16.7.25) be

D Al (16.7.29)

From Eqn. (16.7•2•), (16.1.25) and (16.7.29) we have

o . Aý R D -21 + D'Ale D:A4  (164.7-3)

Suppone now we write Eq, (16.7.2)4) in the form of Eq. (16.7.30)

o h - 1 -~i~ -2 1+ D0 1 C Del, (116.7-31)

From Eqs. (16.7.28) nnd (16.7.71) we see that the (I inat•'x cancels out, and

Eq. (16.o.31) becomes precisely Eq. (16.7.30). Therefore 0 in Eq. (16.7131)



1a independent of Boasi and would aoef to be a desirable matrix for tfatoring.

Vurthermore, Ruppouo we let

u" D•'1IR DR• (l6.7.•2)

Then Eq. (16#.7*3) can be written

o + 5 1 -2 • (16.T7.)

We also know that the baste orthonormnlo of• & and a are the som and
thatp If the basic struoture of t 1o

,., oa, •/(t6.7.34A)

then

* 'l " Q~ •' (16.7.35)

nnd

o G o(6+8 - 2 1) ' (16.7.36)

It should also be noted that - is the well known matrix of n-2 order partial

correlation• coefficients.

1L.7.ti The Optimal EWror Covariance M4atrix

Considoar again the eatimated covariance matrix

*j W 1a - 2 + D-R D - (6l.~

and the estimated error oovtariance matrix

C D(16.1O D3



I

We may wvih to oonutd Ior A noaltll of ia in sq. (1o.o.37)p and hence the

Isae sualing of = tn W(l. (whic8) whiu will raou-t In the beat loast

aquare approximation to the idenityt matvUx, We wty than equally well con-

sidow the boulina ol' I' willi Is th. beat loaut fqucuv oetimate of the idon-

tity matrix# Tet

d 4- . (if.'.d9)

and datotaino d so that

tr 904 uminim(6r'o

From Eqs (6(.) and (16.'1.14)

Let

fl 1  up(16.7.42)

and from Eqs. (16.7.Iil) and (16.T.42)

tr (d p • p d 2 d -2 d + 1) (16..743)

Let

V d 1 (16"T-4•)

From Eq. (16.7.4*4)

tr (d d) V1 D V (16.7-45)



11.8

Lot (0 be a matrix of tile qu4ara4 91mgnts of p Than It can be shown

that

tr (d p4d2 p d) ¶V1 4 p(2) 4V (v6.7.,,6)

ftm2qa. (16.7.43), (16.7.44), (16.7.45), Aan (16.7.46)

V? d p ) d V - 2 yO Do V+n (16.7.+.1)

Ditferonti sting Eq. (16.7.47) uoynbolically with rbupolat to V1

4 (d p(2•)dV P)

Equating E~q. (16.7.48) to zaro

d (p) d V ao V (16.7.4,9)

or from rgs. (16.7.44) and (16.7.49)

S•( ) 42 •12 1 ( 16.7. 50)

Fran Eqc. (16.7-50)

d" 1 a (p((16.7 D1)

To scale Cw W in Eq. (16.7.-7), therefore, so that tho ocaled 0r. X part is
the boet least square approximation to an idontity matrixp we write first
from •q. (16.7.37)

DnrC 1W jj De D1 R DO. 2 D.••+,



Then latting be the $48104 OW matrix, an4 4si~neg givelt by IVq. 1..@1)

we have

. . . . .i? i * i 2 ie ) 4 )


